Skip to main content
Log in

Effect of high molecular weight on pore formation and various properties of microporous membrane used for lithium-ion battery separator

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, iPP cast films with high molecular weight in middle layer were prepared to investigate the effect of high molecular weight component on pore formation and mechanical strength. The results of DSC, SEM and 2D-XRD indicated that higher molecular weight and die draw ratio (DDR) would not alter the thickness of lamellae but enhance the orientation and the content of extend-chain crystal. Then the tensile testing results show that higher DDR would improve the overall strength and the elastic recovery substantially but reduce the elongation at break dramatically. Additionally, the cast film containing higher molecular weight component has longer elongation and yield stress but shows a more gentle decrease of elastic recovery during the repeatedly stretching cycle. Moreover, further detailed characterization of the microporous structure after uniaxial stretching manifest that lower DDR is extremely unfavorable to pore formation, resulting in lowest porosity and poorer pore size distribution. While this inferior microporous structure would be improved by increasing DDR, accompanied by ascending porosity. Moreover, the membrane completely composed of high molecular weight also exhibits more coarse fibrils, which is stemmed from the undivided row-nucleated lamellae. Furthermore, the puncture and tensile strength were reinforced by boosting molecular weight and DDR significantly, which is more beneficial to battery assembly and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References:

  1. Lee J, Macosko CW, Bates FS (2004) Development of discrete nanopores I: tension of polypropylene/ polyethylene copolymer blends. J Appl Polym Sci 91(6):3642–3650

    Article  CAS  Google Scholar 

  2. Zohrevand A, Ajji A, Mighri F (2014) Microstructure and properties of porous nanocomposite films: effects of composition and process parameters. Polym Int 63(12):2052–2060

    Article  CAS  Google Scholar 

  3. Chu F, Kimura Y (1996) Structure and gas permeability of microporous films prepared by biaxial drawing of ?-form polypropylene. Polymer 37(4):573–579

    Article  CAS  Google Scholar 

  4. Schofield RW, Fane AG, Fell CJD (1990) Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. J Membr Sci 53(1–2):159–171

    Article  CAS  Google Scholar 

  5. Schofield RW, Fane AG, Fell CJD (1990) Gas and vapour transport through microporous membranes. II. Membrane distillation. J Membr Sci 53(1–2):173–185

    Article  CAS  Google Scholar 

  6. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41

    Article  CAS  Google Scholar 

  7. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95

    Article  CAS  Google Scholar 

  8. Zhang SS (2007) A review on the separators of liquid electrolyte li-ion batteries. J Power Sources 164(1):351–364

    Article  CAS  Google Scholar 

  9. Liu H, Xu J, Guo B, He X (2014) Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries. J Mater Sci 49(20):6961–6966

    Article  CAS  Google Scholar 

  10. Huang X (2012) A lithium-ion battery separator prepared using a phase inversion process. J Power Sources 216:216–221

    Article  CAS  Google Scholar 

  11. Ihm D, Noh J, Kim J (2002) Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for li-ion secondary battery. J Power Sources 109(2):388–393

    Article  CAS  Google Scholar 

  12. Jeong H, Kim D, Jeong YU, Lee S (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sources 195(18):6116–6121

    Article  CAS  Google Scholar 

  13. Sadeghi F, Ajji A, Carreau P (2007) Analysis of microporous membranes obtained from polypropylene films by stretching. J Membr Sci 292(1–2):62–71

    Article  CAS  Google Scholar 

  14. Tabatabaei S, Carreau P, AJJI A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325(2):772–782

    Article  CAS  Google Scholar 

  15. Chu F, Kimura Y (1996) Structure and gas permeability of microporous films prepared by biaxial drawing of β-form polypropylene. Polymer 37(4):573–579

    Article  CAS  Google Scholar 

  16. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Influence of lamellar structure on double yield behavior and pore size distribution in β nucleated polypropylene stretched membranes. RSC Adv 4(81):43012–43023

    Article  CAS  Google Scholar 

  17. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689

    Article  CAS  Google Scholar 

  18. Liu S, Zhou C, Yu W (2011) Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci 379(1–2):268–278

    Article  CAS  Google Scholar 

  19. Yang F, Wu T, Xiang M, Cao Y (2017) Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures. Eur Polym J 91:134–148

    Article  CAS  Google Scholar 

  20. Xu R, Zeng S, Wang J, Kang J, Xiang M, Yang F (2018) Impact of different die draw ratio on crystalline and oriented properties of polypropylene cast films and annealed films. J Polym Res 25(6)

  21. Liu D, Kang J, Xiang M, Cao Y (2013) Effect of annealing on phase structure and mechanical behaviors of polypropylene hard elastic films. J Polym Res 20(5)

  22. Sadeghi F, Ajji A, Carreau PJ (2007) Analysis of row nucleated lamellar morphology of polypropylene obtained from the cast film process: effect of melt rheology and process conditions. Polym Eng Sci 47(7):1170–1178

    Article  CAS  Google Scholar 

  23. Sadeghi F, Ajji A, Carreau PJ (2008) Microporous membranes obtained from polypropylene blends with superior permeability properties. J Polym Sci B Polym Phys 46(2):148–157

    Article  CAS  Google Scholar 

  24. Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene:? The role of long chain?Long chain overlap. Macromolecules 35(7):2583–2594

    Article  CAS  Google Scholar 

  25. Tabatabaei SH, Carreau PJ, Ajji A (2009) Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer 50(17):4228–4240

    Article  CAS  Google Scholar 

  26. Tabatabaei SH, Carreau PJ, Ajji A (2009) Microporous membranes obtained from PP/HDPE multilayer films by stretching. J Membr Sci 345(1–2):148–159

    Article  CAS  Google Scholar 

  27. Bashir Z, Odell JA, Keller A (1986) Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion. J Mater Sci 21(11):3993–4002

    Article  CAS  Google Scholar 

  28. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci B 41(4):1121–1171

    Article  CAS  Google Scholar 

  29. Lin Y, Meng L, Wu L, Li X, Chen X, Zhang Q, Zhang R, Zhang W, Li L (2015) A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane. Polymer 80:214–227

    Article  CAS  Google Scholar 

  30. Huo H, Jiang S, An L, Feng J (2004) Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37(7):2478–2483

    Article  CAS  Google Scholar 

  31. Luo F, Geng C, Wang K, Deng H, Chen F, Fu Q, Na B (2009) New understanding in tuning toughness of β-polypropylene: the role of ?-nucleated crystalline morphology. Macromolecules 42(23):9325–9331

    Article  CAS  Google Scholar 

  32. Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36(4):731–742

    Article  CAS  Google Scholar 

  33. Bassett DC, Olley RH (1984) On the lamellar morphology of isotactic polypropylene spherulites. Polymer 25(7):935–943

    Article  CAS  Google Scholar 

  34. Olley RH, Bassett DC (1989) On the development of polypropylene spherulites. Polymer 30(3):399–409

    Article  CAS  Google Scholar 

  35. Zhu W, Zhang X, Zhao C, Wu W, Hou J, Xu M (1996) A novel polypropylene microporous film. Polym Adv Technol 7(9):743–748

    Article  CAS  Google Scholar 

  36. Ran S, Xu M (2004) Studies on the pore formation mechanism of β-crystalline polypropylene under stretching. Chin J Polym Sci 22(2):123–130

    CAS  Google Scholar 

  37. Takase Y, Lee JW, Scheinbeim JI, Newman BA (1991) High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics. Macromolecules 24(25):6644–6652

    Article  CAS  Google Scholar 

  38. Bellare A, Schnablegger H, Cohen RE (1995) A small-angle X-ray scattering study of high-density polyethylene and ultrahigh molecular weight polyethylene. Macromolecules 28(23):7585–7588

    Article  CAS  Google Scholar 

  39. Goderis B, Reynaers H, Koch MHJ, Mathot VBF (1999) Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J Polym Sci B Polym Phys 37(14):1715–1738

    Article  CAS  Google Scholar 

  40. Wu T, Xiang M, Cao Y, Kang J, Yang F (2015) Influence of lamellar structure on the stress–strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures. RSC Adv 5(54):43496–43507

    Article  CAS  Google Scholar 

  41. Lezak E, Bartczak Z (2008) Plastic deformation behavior of β phase isotactic polypropylene in plane-strain compression at elevated temperatures. J Polym Sci B Polym Phys 46(1):92–108

    Article  CAS  Google Scholar 

  42. Lezak E, Bartczak Z, Galeski A (2006) Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer 47(26):8562–8574

    Article  CAS  Google Scholar 

  43. Ščudla J, Raab M, Eichhorn K, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44(16):4655–4664

    Article  CAS  Google Scholar 

  44. Song KW, Kim CK (2010) Coating with macroporous polyarylate via a nonsolvent induced phase separation process for enhancement of polyethylene separator thermal stability. J Membr Sci 352(1–2):239–246

    Article  CAS  Google Scholar 

  45. Jeong H, Hong SC, Lee S (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364(1–2):177–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to the Natural Science Foundation of China for Financial Support (51421061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Ding, L., Wu, T. et al. Effect of high molecular weight on pore formation and various properties of microporous membrane used for lithium-ion battery separator. J Polym Res 25, 166 (2018). https://doi.org/10.1007/s10965-018-1567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1567-6

Keywords

Navigation