Skip to main content
Log in

pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The aim of this study is to design and develop novel hybrid pH-responsive hydrogels. For this purpose, new copolymers with different molecular weights and different content of the hydrophobic part are synthesized. The self-assembly behavior of PSMA-co-PDMAEMA copolymerswasstudiedin two different dispersion media (simulated gastric fluid-SGF, pH = 1.2 and simulated intestinal fluid-SIF, pH = 6.8) and in different concentrations. The physicochemical characteristics of the nano-assemblies were found to be dependent on the composition of the copolymer and the aqueous environment. Having a complete knowledge of the self-assembly behavior of the copolymers in aqueous media, the encapsulation of the PSMA-co-PDMAEMA 1/2 nano-assemblies into Alginate beads was achieved by following the protocol of the preparation of hydrogels. The Calcium:Alginate hydrogels were used as reference systems for comparison reasons. The size and the morphology of pure and mixed beads were found to be dependent on the composition of the block copolymer, as revealed from SEM images. The behavior of the mixed hydrogels was the same during the swelling studies, but the rate of the swelling and the amount of weight change were found to be additionally dependent on the composition of the polymeric guest. The hydration state of the polymeric chains plays a key role inthe swelling behavior of the mixed hydrogels. In conclusion, pH-responsive hybrid hydrogels were developed and their behavior and morphology are strongly dependent on the molecular characteristics of the polymeric guest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 355(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  2. Kamata H, Li X, Chung UI, Sakai T (2015) Design of hydrogels for biomedical applications. Adv Healthc Mater 4(16):2360–2374

    Article  CAS  PubMed  Google Scholar 

  3. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. AngewChemInt Ed Engl 48:5418–5429

    CAS  Google Scholar 

  4. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang H, Zhai Y, Wang J, Zhai G (2016) New progress and prospects: the application of nanogels in drug delivery. Mater SciEng C Mater Biol Appl 60:560–568

    Article  CAS  Google Scholar 

  6. Patel GC, Dalwadi CA (2013) Recent patents on stimuli responsive hydrogel drug delivery system. Recent Pat Drug Deliv Formul 7(3):206–215

    Article  CAS  PubMed  Google Scholar 

  7. Maitz MF, Freudenberg U, Tsurkan MV, Fischer M, Beyrich T, Werner C (2013) Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat Commun 4:2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6(4):1285–1309

    Article  CAS  Google Scholar 

  9. Hudson D, Margaritis A (2014) Biopolymer nanoparticle production for controlled release for biopharmaceuticals. Crit Rev Biotechnol 34(2):161–179

    Article  CAS  PubMed  Google Scholar 

  10. Venkatesan J, Nithya R, Sudha PN, Kim SK (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57

    Article  CAS  PubMed  Google Scholar 

  11. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginatecomposites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  PubMed  Google Scholar 

  12. Jana S, Sen KK, Gandhi A (2016) Alginate based nanocarriers for drug delivery applications. Cuur Pharm Des 22(22):3399–3410

    Article  CAS  Google Scholar 

  13. Peppas NA, Bures P, Leobandung W, Ichickawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  14. Anal AK, Bhopatkar D, Tokura S, Tamura H, Stevens WF (2003) Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug DevInd Pharm 26(6):713–724

    Article  CAS  Google Scholar 

  15. Lin YH, Liang HF, Chung CK, Chen MC, Sung HG (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26(14):2105–2113

    Article  CAS  PubMed  Google Scholar 

  16. Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D (2009) New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug. Eur J Pharm Biopharm 73(3):345–350

    Article  CAS  PubMed  Google Scholar 

  17. Nochos A, Douroumis D, Bouropoulos N (2008) In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr Polym 74(3):451–457

    Article  CAS  Google Scholar 

  18. Pasparakis G, Bouropoulos N (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. Int J Pharm 323(1–2):34–42

    Article  CAS  PubMed  Google Scholar 

  19. Keely S, Ryan SM, Haddleton DM, Limer A, Mantovani G, Murphy EP, Colgan SP, Brayden DJ (2009) Dexamethasone-pDMAEMA polymeric conjugates reduce inflammatory biomarkers in human intestinal epithelial monolayers. Controlled Rel 135:35–43

    Article  CAS  Google Scholar 

  20. Fujii S, Mouri E, Akiyama K, Nakayama S, Uda K, Nakamura Y, Matsuoka H (2017) pH-sensitive adsorption behavior of polymer particles at the air-water interface. Langmuir 33(6):1451–1459

    Article  CAS  PubMed  Google Scholar 

  21. Fujii S, Akiyama K, Nakayama S, Hamasak S, Yusa S, Nakamura Y (2015) pH- and temperature-responsive aqueous foams stabilized by hairy latex particles. Soft Matter 11:572–579

    Article  CAS  PubMed  Google Scholar 

  22. Baskar G, Ramya S, Mandal AB (2002) Synthesis and solution properties of comblike polymers from octadecyl methacrylate and acrylic acid. Colloid Polym Sci 280(10):886

    Article  CAS  Google Scholar 

  23. Qin SH, Saget J, Pyun J, Jia SH, Kowalewski T, Matyjaszewski K (2003) Synthesis of block, statistical, and gradient copolymers from Octadecyl (meth) acrylates using atom transfer radical polymerization. Macromolecules 36:8969–8977

    Article  CAS  Google Scholar 

  24. Zhou JF, Wang L, Yang Q, Liu Q, Yu H, Zhao Z (2007) Novel Thermoresponsive and pH-responsive aggregates from self-assembly of triblock copolymer PSMA-b-PNIPAAm-b-PSMA. J Phys Chem B 111(20):5573–5580

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Ni P, Fang X, Zhou X (2009) Synthesis of amphiphilic diblock copolymers poly[2-(N, N-dimethylamino)ethyl methacrylate]-b-poly (stearyl methacrylate) and their self-assembly in mixed solvent. Colloid Polym Sci 287:45–55

    Article  CAS  Google Scholar 

  26. Kusuktham B, Prasertgul J, Srinum P (2014) Morphology and property of calium silicate ebcapsulatedwitth alginate beads. SILICON 6:191–107

    Article  CAS  Google Scholar 

  27. Shamshina JL, Gurau G, Block LE, Hansen LK, Dingee C, Walters A, Rogers RD (2014) Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mater Chem B 2:3924–3936

    Article  CAS  Google Scholar 

  28. Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym 59:129–140

    Article  CAS  Google Scholar 

  29. Dainty AL, Goulding KH, Robinson PK, Simkins I, Trevan MD (1986) Stability of alginate-immobilized algal cells. Biotechnol Bioeng 28:200–216

    Article  Google Scholar 

  30. Li L, Ryu JH, Thayumanavan S (2013) Effect of Hofmeister ions on the size and the encapsulation stability of polymer nanogels. Langmuir 29:50–55

    Article  CAS  PubMed  Google Scholar 

  31. Davidovich-Pinhas M, Bioanco-Peled H (2010) A quantitative analysis of alginate swelling. Carbohydr Polym 79:1020–1027

    Article  CAS  Google Scholar 

  32. Kaygusuz H, Evingür CA, Pekacan Ö, von Klitzing R, Erim FB (2013) Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. Int J Biol Macromol 92:220–224

    Article  CAS  Google Scholar 

  33. Padol AM, Draget KI, Stokke BT (2016) Effects of added oligoguluronate on mechanical properties of ca-alginate-oliguluronate hydrogels depend on chain length of the alginate. Carbohydr Polym 147:234–242

    Article  CAS  PubMed  Google Scholar 

  34. Puguan JM, Yu X, Kim H (2014) Characterization of structure, physic-chemical properties and diffusion behavior of ca-alginate gel beads prepared by different gelation methods. J Colloid Interface Sci 432:109–116

    Article  CAS  PubMed  Google Scholar 

  35. Puguan JM, Yu X, Kim H (2015) Diffusion characteristics of different molecular weight solutes in ca-alginate gel beads. Colloids Surf A Physicochem Eng Asp 469:158–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded as Scholarship – Grant by the Experimental- Research Center ELPEN (E.R.C.E) and the Hellenic Society of Biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natassa Pippa or Stergios Pispas.

Electronic supplementary material

ESM 1

(DOCX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pippa, N., Sentoukas, T., Pispas, S. et al. pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies. J Polym Res 25, 117 (2018). https://doi.org/10.1007/s10965-018-1519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1519-1

Keywords

Navigation