Skip to main content
Log in

Chitosan-g-poly(4-acrylamidobenzenesulfonamide) copolymers: synthesis, characterization, and bioactivity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The monomer, 4-acrylamidobenzenesulfonamide (ABS), was synthesized via reaction of acryloyl chloride with 4-aminobenzenesulfonamide in acetone at 0 °C. This monomer was then grafted onto chitosan using solution containing 2% acetic acid and mixture of K2S2O8 and Na2SO3 as the redox promoter. An optimal G% of 150% was obtained when the process is conducted at 60 °C for 3 h employing 3.0 × 10−3 M K2S2O8 and 1.5 × 10−3 M Na2SO3. The graft copolymers, chitosan-g-poly(4-acrylamidobenzenesulfonamide), were characterized by using FTIR, XRD, and SEM. The results were shown that the crystallinity of chitosan is enhanced by increasing the monomer content through the grafting process. Potential Antimicrobial activities of the permethyl ammonium salt forms of chitosan and its grafted copolymers against selected microorganisms were evaluated. The results show that the graft copolymers display better inhibitory effects on the growth of bacteria and some fungi than does chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

    Google Scholar 

  2. Jennings JA, Bumgardner JD (2016) Production 1 of chitosan-based hydrogels for biomedical application, Chapter in chitosan based biomaterials, fundamentals, Woodhead, Chapter 12. 1:295–319

  3. Muzzarelli RAA (1996) Chitin enzymology. Ed., AtecEdizioni, Grottammare, Italy, vol. 2

  4. Roberts GAF (1992) Chitin chemistry. Macmillan, London

    Book  Google Scholar 

  5. Jennings JA, Bumgardner JD (2016) The role of nanotechnology and chitosan based biomaterials for tissue engineering and therapeutic delivery, in Chitosan biomaterials, Woodhead, chapter 1, 2:1–29

  6. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro and nanoparticles in drug delivery. Control Release 100:5–28

    Article  CAS  Google Scholar 

  7. Rokhade AP, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamyde grafted dextran and chitosan for the controlled release of acyclovir. CarbohydPolym 67:605–613

    CAS  Google Scholar 

  8. Angadi SC, Manjeshwar TM, Aminabhavi TM (2010) Interpenetrating polymer network blend microspheres of chitosan and hydroyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 47:171–179

    Article  CAS  Google Scholar 

  9. Sankararamakrishnan N, Sanghi R (2006) Preparation and characterization of a novel xanthated chitosan. Carbohyd Polym 66:160–167

    Article  CAS  Google Scholar 

  10. Elkholy SS, Khalil KD, Elsabee MZ (2006) Homogeneous and Hetrogeneous grafting of chitosan with 4-vinyl pyridine. Appl Polym Sci 99:3308–3317

    Article  CAS  Google Scholar 

  11. Al Sagheer FA, Khalil KD, Ibrahim EI (2013) Synthesis and characterization of chitosan-g-poly(2-(furan-2-carbonyl)-acrylonitrile): grafting of chitosan via novel monomer prepared by Baylius-Hillman reaction. Eur Polym J 49:1662–1672

    Article  Google Scholar 

  12. Elkholy SS, Khalil KD, Elsabee MZ (2007) Grafting of vinyl acetate onto chitosan and biocidal activity of the graft copolymers. J Appl Polym Sci 103:1651–1663

    Article  CAS  Google Scholar 

  13. Elkholy SS, Khalil KD, Elsabee MZ (2011) Grafting of acryloylcyanoacetohydrazide onto Chitosan. J Polym Res 18:459–467

    Article  CAS  Google Scholar 

  14. Khedr MA, Waly AI, Hafez AI, Ali H, Gadallah H (2012) Synthesis and Kinetic Study of Chitosan – g- Poly (acrylic acid) nanoparticles.(Part I). Aust J Basic Appl Sci 6(6):174–182

    CAS  Google Scholar 

  15. Lv P, Bin Y, Li Y, Chen R, Wang X, Zhao B (2009) Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer 50:5675–5680

    Article  CAS  Google Scholar 

  16. Liu Y, Li Y, Lv J, Wu G, Li J (2005) Graft copolymerization of methyl methacrylate onto chitosan initiated by potassium Ditelluratocuprate(III). J Mol Sci Part A Pure Appl Chem 42:1169–1180

    Article  Google Scholar 

  17. Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ, Omidian H (2003) Modified chitosan. 1. Optimized CAN-induced synthesis of chitosan-graft-polyacrylonitrile. J App Poly Sci 88:2048–2054

    Article  CAS  Google Scholar 

  18. Khalil KD, Ibrahim EI, Al-Sagheer FA (2014) Synthesis and characterization of chitosan-g-poly (2-cyano-1-(pyridin-3-yl) allyl acrylate) copolymer using a novel monomer prepared via Morita Baylis–Hillman reaction. Polym Inter 63:2042–2051

    Article  CAS  Google Scholar 

  19. Naguib HF, Al Sagheer FA, Ali AM, Elsabee MZ (1996) Polymerization behavior of a new vinyl thiourea derivatives. Eur Polym J 32(8):985–991

    Article  CAS  Google Scholar 

  20. Al Sagheer FA, Ali AM, Reyed MA, Elsabee MZ (1997) Preparation and polymerization of vinyl monomers containing a heterocyclic pendant group. Polym Int 44:88–94

    Article  Google Scholar 

  21. Ali AM, Al Sagheer FA, Elsabee MZ (1999) Study of the polymerization of solid vinyl monomers using differential scanning calorimetry. Polym Test 18(4):313–319

    Article  CAS  Google Scholar 

  22. Al-Sagheer FA, Khalil KD, Ibrahim EI (2014) Crystallinity, antimicrobial activity and dyeing properties of chitosan-g-poly(N-acryloylmorpholine) copolymer. EurPolym J 58:164–172

    CAS  Google Scholar 

  23. Aguero L, Guerrero-Ramirez LG, Katime I (2010) New family of functinalized monomers based on amines: a novel synthesis that exploits the nucleophilic substitution reaction. Mater SciAppl 1:103–108

    CAS  Google Scholar 

  24. Chinelatto MA, Agnelli JAM, Canevarolo SV (2014) Synthesis and characterization of copolymers from hindered amines and vinyl monomers. Polimers 24:30–36

    CAS  Google Scholar 

  25. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Inter J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  26. Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    Article  CAS  Google Scholar 

  27. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  28. Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater 62:605–611

    Article  Google Scholar 

  29. Reddy NS, Rao AS, Chari MA, Kumar VR, Jyothy V, Himabindu V (2012) Synthesis and antibacterial activity of sulfonamide derivatives at C-8 alkyl chain of anacardic acid mixture isolated from a natural product cashew nut shell liquid (CNSL). J Chem Sci 124:723–730

    Article  CAS  Google Scholar 

  30. Dogruer DS, Urlu S, Onkol T, Ozcelik B, Sahin MF (2010) Synthesis of some pyridazine derivatives carrying urea, thiourea, and sulfonamide moieties and their antimicrobial activity. Turk J Chem 34(1):57–65

    CAS  Google Scholar 

  31. Argyropoulou I, Geronikaki A, Vicini P, Zani F (2009) Synthesis and biological evaluation of sulfonamidethiazole and benzothiazole derivatives as antimicrobial agents. ARKIVOC vi:89–102

    Google Scholar 

  32. Alsughayer A, Elassar AA, Al Sagheer FA, Mustafa S (2012) Synthesis and characterization of polysulfanilamide and its copolymers: bioactivity and drug release. Pharmaceutical Chem J 46:418–428

    Article  CAS  Google Scholar 

  33. Al Sagheer FA, Al Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian gulf. Carbohyd Polym 77:410–419

    Article  Google Scholar 

  34. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) New polymorph of chitosan. Macromolecules 17:973–975

    Article  CAS  Google Scholar 

  35. Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    Article  CAS  Google Scholar 

  36. Mun GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68:389–395

    Article  CAS  Google Scholar 

  37. Ding W, Lian Q, Samuels RJ, Polk MB (2003) Synthesis and characterization of a novel derivative of chitosan. Polymer 44:547–556

    Article  CAS  Google Scholar 

  38. Jia Z, Shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333:1–6

    Article  CAS  Google Scholar 

  39. deBritto D, Assis OBG (2007) A novel method for obtaining a quaternary salt of chitosan. Carbohydr Polym 69(2):305–310

    Article  CAS  Google Scholar 

  40. Henry RJ (1944). Bacteriol Rev 7(4):175–260

    Google Scholar 

  41. Isaacson D M, Kirschbaum J (1986) Assays of antimicrobial substances. In: Manual of industrial microbiology and biotechnology (Demain, A. L.; Solomon, N. A.; Eds), ASM, Washington, DC, pp. 410–435

  42. Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95(2):147–155

    Article  CAS  Google Scholar 

  43. Tayel AA, Moussa S, Wael F, Knittel D, Opwis K, Schollmeyer E (2010) Anticandidal action of fungal chitosan against Candida Albicans. Int J Biol Macromol 47(4):454–457

    Article  CAS  Google Scholar 

  44. Seyfarth F, Schliemann S, Elsner P, Hipler UC (2008) Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida kruseiand Candida glabrata. Int J Pharm 353:139–148

    CAS  Google Scholar 

  45. Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mat Sci: Mater Med 20:1057–1079

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support provided by the Kuwait University under the project SC03/10. They also express their appreciation for technical support from the E.M unit and the general facilities projects GS01/01, GS01/03, GS01/05, GS03/01, under the GFS program. Also, the authors thank the Nanoscopy Science Center at Kuwait University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhreia Al-Sagheer.

Electronic supplementary material

ESM 1

(DOCX 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sagheer, F., Khalil, K., Mahmoud, H. et al. Chitosan-g-poly(4-acrylamidobenzenesulfonamide) copolymers: synthesis, characterization, and bioactivity. J Polym Res 24, 230 (2017). https://doi.org/10.1007/s10965-017-1381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1381-6

Keywords

Navigation