Skip to main content
Log in

Superporous cryogel/conductive composite systems for potential sensor applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In situ synthesis of conductive polymers, poly(Aniline) (p(An)), poly(Pyrrole) (p(Py)), and poly(Thiophene) (p(Th)) within network of superporous cryogels with tunable functionalities as neutral poly(acrylamide) (p(AAm), anionic poly(acrylic acid) (p(AAc)), and cationic poly(4-vinylpyridine) (p(4-VP)) were carried out via oxidation polymerization technique. The highest conductivity values were measured for p(AAm)/p(An) semi-IPN cryogel with 1.4 × 10−2 S.cm−1 and for p(AAc)/p(Py) cryogel with 3.2 × 10−4 S.cm−1. In addition, to increase the amounts of conductive polymers within cryogel networks, reloading/polymerization cycle was carried out thrice, and found that there is no significant increase in the amounts of conductive polymers and the measured conductivity values. The prepared p(AAm), p(AAc), and p(4-VP) cryogels and their corresponding p(An), p(Py), and p(Th) composites were tested potential sensor materials against HCl and NH3 vapor. The changes on conductivities for bare p(4-VP) cryogel were observed as 70 and 52-fold increase upon HCl and NH3 gas treatment, respectively. The p(4-VP)/p(An) p(An) composites showed 7-fold conductivity decrease upon the treatments of HCl and NH3 vapors. The p(AAm)/p(Py) composite responded 2-fold increase upon HCl vapor exposure and 50-fold decrease upon NH3 vapor exposure. Furthermore, p(AAm)/p(Th) cryogel composite responded 7-fold decrease and 300-fold increase in their conductivities upon HCl and NH3 vapor exposure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bakhshi AK, Suzuki G (2004) Electrically conducting polymers: materials of the twenty first century J Sci Ind Res 63:715–728

    CAS  Google Scholar 

  2. Ates M, Karazehira T, Sarac AS (2012) Conducting polymers and their applications Curr Phys Chem 2:224–240

    Article  CAS  Google Scholar 

  3. Das TK, Prusty S (2012) Review on conducting polymers and their applications Polym-Plast Technol Eng 51:1487–1500

    Article  CAS  Google Scholar 

  4. Wei W, Wang H, Hu YH (2014) A review on PEDOT-based counter electrodes for dye-sensitized solar cells Int J Energy Res 38:1099–1111

    Article  CAS  Google Scholar 

  5. Guiseppi-Ellie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications Biomaterials 31:2701–2716

    Article  Google Scholar 

  6. Perepichka IF, Perepichka DF, Meng H, et al. (2005) Light-emitting polythiophenes Adv Mater 17:2281–2305

    Article  CAS  Google Scholar 

  7. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications Displays 27:2–18

    Article  CAS  Google Scholar 

  8. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) A Electreochemical sensors based on conducting polymer-polypyrrole Electrochim Acta 51:6025–6037

    Article  CAS  Google Scholar 

  9. Lang U, Roznyatovskaya NY, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays Anal Chim Acta 614:1–26

    Article  Google Scholar 

  10. Katz HE, Huang J (2009) Thin-film organic electronic devices Annu Rev Mater Res 39:71–92

    Article  CAS  Google Scholar 

  11. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  12. Yin Z, Zheng Q (2011) Controlled synthesis and energy appications of one-dimensional condcting polymer nanostructures: an overwiew Adv Energy Mater 2:179–218

    Article  Google Scholar 

  13. Mike JF, Lutkenhaus JL (2013) Recent advances in conjugated polymer energy storage J Polym Sci B Polym Phys 51:468–480

    Article  CAS  Google Scholar 

  14. Bai H, Shi G (2007) Gas sensor based on conducting polymers Sensors 7:267–307

    Article  CAS  Google Scholar 

  15. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds.) (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York,

    Google Scholar 

  16. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers Synth Met 125:11–22

    Article  Google Scholar 

  17. Sargin I, Arslan G, Erzengin M (2016) Interactions of bovine serum albumin with humic acid-cu(II) aggregates in poly(hydroxyethylmethacrylate) cryogel column J Taiwan Ins Chem Eng 63:101–106

    Article  CAS  Google Scholar 

  18. Bloch K, Vanichkin A, Vardi P, et al. (2010) Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice Acta Biomater 6:1200–1205

    Article  CAS  Google Scholar 

  19. Sahiner N, Yildiz S (2014) Preparation of superporous poly(4-vinyl pyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions Fuel Process Technol 126:324–331

    Article  CAS  Google Scholar 

  20. Sahiner N, Demirci S (2016) Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), p(thiophene), and poly(pyrrole) polymers withnin superpororus poly(acrylic acid) cryogels React Funct Polym 105:60–65

    Article  CAS  Google Scholar 

  21. Sahiner N, Demirci S (2016) In situ preparation of polyaniline within neutral, anionic, and cationic superporous cryogel networks as conductive, semi-interpenetrating polymer network cryogel composite systems J Appl Polym Sci 133:44137–44145

    Article  Google Scholar 

  22. Sahiner N, Demirci S, Sahiner M, et al. (2015) The use of superporous p(3-acrylamidopropyl)trimethyl amonium chloride cryogels for removal of toxic arsenate anions J Environ Manag 152:66–74

    Article  CAS  Google Scholar 

  23. Ertürk G, Mattiasson B (2014) Cryogels-versatile tools in bioseparation J Chromatogr A 1357:24–35

    Article  Google Scholar 

  24. Fatoni A, Numnuam A, Kanatharan P, et al. (2013) A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene Sensor Actuat B Chem 185:725–734

    Article  CAS  Google Scholar 

  25. McEvoy MA, Correll N (2015) Materials that couple sensing, actuation, computation, and communication Science 347:1261689

    Article  CAS  Google Scholar 

  26. Seven F, Sahiner N (2014) Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported co and Ni J Power Sources 272:128–136

    Article  CAS  Google Scholar 

  27. Sahiner N, Seven F (2014) The use of superporous p(AAc (acrylic acid)) cryogels as support for co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis Energy 71:170–179

    Article  CAS  Google Scholar 

  28. Sahiner N, Demirci S, Sel K (2016) Conductivity of p(AAc) cryogel and its li+, Na+, and K+ salts for NH3 sensing J Electron Mater 45:3759–3765

    Article  CAS  Google Scholar 

  29. Tatykhanova GS, Sadakbayeva ZK, Berillo D, et al. (2012) Metal complexes of amphoteric cryogels based on allylamine and methacrylic acid Macromol Symp 317:18–27

    Article  Google Scholar 

  30. Kudaibergenov S, Adilov Z, Berillo D, et al. (2012) Novel macroporous amphoteric gels: preparation and characterization eXPRESS Polym Let 6:346–353

    Article  CAS  Google Scholar 

  31. Babaei H, McGaughey AJH, Wilmer CE (2017) Effect of pore sizes and shape on the thermal conductivity of metal organic frameworks Chem Sci 8:583–589

    Article  CAS  Google Scholar 

  32. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors Nature 2:19–24

    Article  CAS  Google Scholar 

  33. Liu X, Li J, Sun J, et al. (2015) Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature RSC Adv 5:73699–73704

    Article  CAS  Google Scholar 

  34. Wang L, Kumar RV (2004) Thick film miniaturized HCl gas sensor Sensor Actuat B Chem 98:196–203

    Article  CAS  Google Scholar 

  35. Jeon H, Lee J, Kim MH, et al. (2012) Polydiacetylene-based electrospun fibers for detection of HCl gas Macromol Rapid Commun 33:972–976

    Article  CAS  Google Scholar 

  36. Alizadeh T, Ahmadian F (2015) Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia Anal Chim Acta 897:87–95

    Article  CAS  Google Scholar 

  37. Tai H, Jiang Y, Xie G, et al. (2007) Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor Int J Environ Anal Chem 87:539–551

    Article  CAS  Google Scholar 

  38. Chougule MA, Pawar SG, Patil SL, et al. (2011) Polypyrrole thin film: room temperature ammonia gas sensor IEEE Sensors J 11:2137–2141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by The Scientific and Technological Research Council of Turkey (214 M130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahiner, N., Demirci, S. & Aktas, N. Superporous cryogel/conductive composite systems for potential sensor applications. J Polym Res 24, 126 (2017). https://doi.org/10.1007/s10965-017-1288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1288-2

Keywords

Navigation