Skip to main content
Log in

Structure evolution of polyamide (11)’s crystalline phase under uniaxial stretching and increasing temperature

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermal processing of polyamide influences the internal crystalline structure and thereafter the post product mechanical performance. In this article, the crystalline transition of polyamide-11 (PA11) plate under uniaxial stretching and increasing temperature was investigated systematically using in-situ synchrotron X-ray technique. It was discovered that the lamellar slippage, fragmentation and recrystallization occurred in sequence under increasing temperature. In detail, the crystal of PA11 plate was stretched with a transition from triclinic α-form to mesomorphic phase at 25 °C. For the thermally activated γ-form crystals, crystal transition was inhibited when temperature was increased up to 160 °C. The melt-recrystallization was inclined to take place at large tensile strains. This work enhances the research significance of the thermal processing of polyamide and provides a theoretical method to improve the high performance of polyamide products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu YP et al (2012) Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle x-ray scattering study. Macromolecules 45:2764–2772

    Article  CAS  Google Scholar 

  2. Bouvard JL et al (2016) Modeling the mechanical behavior and impact properties of polypropylene and copolymer polypropylene. J Polym Res 23(4):70–75

    Article  Google Scholar 

  3. Galeski A et al (1992) Morphological alterations during texture producing plastic plane strain compression of high-density polyethylene. Macromolecules 25:5705–5718

    Article  CAS  Google Scholar 

  4. Jaggi HS, Satapathy BK, Ray AR (2014) Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J Polym Res 21(8):1–13

    Article  CAS  Google Scholar 

  5. Young RJ et al (1973) Deformation mechanisms in oriented high-density polyethylene. J Mater Sci 8:23–36

    Article  CAS  Google Scholar 

  6. Baseri S et al (2011) Effect of drawing temperature on mesomorphic transitions of oriented poly(ethylene terephthalate) fibers exposed to supercritical CO2. J Polym Res 18(6):2033–2043

    Article  CAS  Google Scholar 

  7. Flory PJ, Yoon DY (1978) Molecular morphology in semicrystalline polymers. Nature 272:226–229

    Article  CAS  Google Scholar 

  8. Wu W et al (1992) A SANS study of the plastic deformation mechanism in polyethylene. Polymer 33:4137–4140

    Article  CAS  Google Scholar 

  9. Keller A, Pope DP (1971) Identification of structural processes in deformation of oriented polyethylene. J Mater Sci 6:453–478

    Article  CAS  Google Scholar 

  10. Schultz JM (1974) Polymer Materials Science. Academic Press, Engle-wood Cliffs

    Google Scholar 

  11. Corneliussen R, Peterlin A (1967) The influence of temperature on the plastic deformation of polyethylene. Makromol Chem 105:193–203

    Article  CAS  Google Scholar 

  12. Meinel G, Peterlin A (1970) Plastic deformation of polyethylene. Colloid Polym Sci 242:1151–1160

    CAS  Google Scholar 

  13. Peterlin A, Meinel G (1971) Small-angle X-ray diffraction studies of plastically deformed polyethylene. III Small draw ratios. Makromol Chem 142:227–240

    Article  CAS  Google Scholar 

  14. Na B et al (2011) Oriented re-crystallization of polypropylene through partial melting and its dramatic influence on mechanical properties. J Polym Res 18(6):2103–2108

    Article  CAS  Google Scholar 

  15. Jiang ZY et al (2007) Structural evolution of tensiledeformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study. Macromolecules 40:7263–7269

    Article  CAS  Google Scholar 

  16. Jiang ZY et al (2009) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 50:4101–4111

    Article  CAS  Google Scholar 

  17. Men Y et al (2003) Spherulite morphology of form III isotactic poly (1-butene). Phys Rev Lett 91:095502

    Article  Google Scholar 

  18. Zhang X et al (2012) Plastic deformation and solid-phase transformation in polybutene-1. Polymer 53:648–656

    Article  CAS  Google Scholar 

  19. Hu GS et al (2009) Crystalline morphology and melting behavior of nylon11/ethylene-vinyl alcohol/dicumyl peroxide blends. J Polym Res 16(3):263–269

    Article  CAS  Google Scholar 

  20. Rhoades AM et al (2016) Supercooling-controlled heterogeneous and homogenous crystal nucleation of polyamide 11 and its effect onto the cystal/mesophase polymorphism. Polymer 106:29–34

    Article  CAS  Google Scholar 

  21. Jones NA et al (2000) Structural development during the early stages of polymer melt spinning by in-situ synchrotron X-ray techniques. J Polym Sci Polym Phys 38:1209–1221

    Article  CAS  Google Scholar 

  22. Song JB et al (2005) Deformation-induced phase transitions of polyamide 12 at different temperatures: an in situ wide angle X-ray scattering study. Macromol Rapid Commun 26:487–490

    Article  Google Scholar 

  23. Cai Z et al (2015) Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212. Compos Part A-Appl S 69:115–123

    Article  CAS  Google Scholar 

  24. Zhang QX et al (2001) Crystal transitions of Nylon 11 under drawing and annealing. Polymer 42:5543–5547

    Article  CAS  Google Scholar 

  25. Wang B et al (2006) Crystallization behavior of carbon nanotubes-filled polyamide 1010. J Appl Polym Sci 100(2):3794–3800

    Article  CAS  Google Scholar 

  26. Feldman AY et al (2006) The Brill transition in transcrystalline nylon-66. Macromolecules 39:4455–4459

    Article  CAS  Google Scholar 

  27. Tadokoro K, Tadokoro H (1981) Calculation of three-dimensional elastic constants of polymer crystals. 3. α and γ forms of nylon 6. Macromolecules 14:781–785

    Article  Google Scholar 

  28. Guo H et al (2015) Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS. Polymer 70:109–117

    Article  CAS  Google Scholar 

  29. Cai Z et al (2016) Structure evolution of polyamide 1212 during the uniaxial stretching process: in situ synchrotron wide-angle x-ray diffraction and small-angle x-ray scattering analysis. Ind Eng Chem Res 55:7621–7627

    Article  CAS  Google Scholar 

  30. Wen HY et al (2012) Shear effects on crystallization behavior of poly(ethylene-co-octene) copolymers. J Polym Res 19(1):9801–9810

    Article  Google Scholar 

  31. Mao YM et al (2011) Wide-angle x-ray scattering study on shear-induced crystallization of propylene-1-butylene random copolymer: experiment and diffraction pattern simulation. Macromolecules 43(4):558–565

    Article  Google Scholar 

  32. Men YF et al (2004) Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly (1-butene). Macromolecules 37:9481–9488

    Article  CAS  Google Scholar 

  33. Wang YT et al (2012) Tensile deformation of polybutene-1 with stable form I at elevated temperature. Macromolecules 46:518–522

    Article  Google Scholar 

  34. Samon JM et al (2000) Study of the cold drawing of nylon 6 fiber by in-situ simultaneous small-and wide-angle X-ray scattering techniques. Polymer 41:2169–2182

    Article  CAS  Google Scholar 

  35. Li L et al (2003) Phase diagrams of stoichiometric polyelectrolyte − surfactant complexes. Macromolecules:36, 1626–1632

  36. Jiang ZY et al (2010) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small-and wide-angle X-ray scattering studies. J Phys Chem B 114:6001–6005

    Article  CAS  Google Scholar 

  37. Offenbach I et al (2015) Real-time infrared-mechano-optical behavior and structural evolution of polypropylene and hydroxyl-functionalized polypropylene during uniaxial deformation. Macromolecules 48:6294–6305

    Article  CAS  Google Scholar 

  38. Miri V et al (2011) On the deformation induced order–disorder transitions in the crystalline phase of polyamide 6. Eur Polym J 47:88–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Cai, Z. & Qian, K. Structure evolution of polyamide (11)’s crystalline phase under uniaxial stretching and increasing temperature. J Polym Res 24, 81 (2017). https://doi.org/10.1007/s10965-017-1244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1244-1

Keywords

Navigation