Skip to main content
Log in

In situ FTIR spectroscopy study on the rapid dissolution process of modified poly(vinyl alcohol)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, modified poly(vinyl alcohol) (m-PVA) has been synthesized via copolymerization of vinyl acetate in methanol by adding comonomers acrylic acid and butyl acrylate followed by saponification. This modified poly(vinyl alcohol) can be completely dissolved into water before 60 °C without agitation. The rapid dissolution process of m-PVA was investigated by temperature-dependent Fourier transform infrared (FTIR) spectroscopy from 20 °C to 85 °C. The results showed that the wavenumber ranges of m-PVA in the O-H stretching and bending bands beyond the measuring range of the spectrometer were much larger than those of common PVA. This demonstrated that m-PVA chains could interact with water molecules more strongly and form hydrogen bonds with the hydroxyl groups of water more easily. The introduction of carboxyl groups destroyed the chemical regularity of polymer chains, which led to the decreasing crystallinity degree and imperfect crystal structures. Both the lower crystallinity degree and imperfect crystal structures were crucial factors to the rapid dissolution of m-PVA. Moreover, traditional Fourier transform infrared (FTIR) spectra, 1H nuclear magnetic resonance (1H NMR), and differential scanning calorimetry (DSC) were also applied to study the m-PVA in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gohil JM, Bhattacharya A, Ray P (2006) J Polym Res 13:161–169

    Article  CAS  Google Scholar 

  2. Doudou BB, Vivet A, Chen J, Laachachi A, Falheer T, Poilane C (2014) J Polym Res 21:1–9

    Google Scholar 

  3. Mitic Z, Nikolic GS, Cakic M, Premovic P, Ilic L (2009) J Mol Struct 924–926:264–273

    Article  Google Scholar 

  4. Baudry R, Sherrington DC (2006) Macromolecules 39:5230–5237

    Article  CAS  Google Scholar 

  5. Wang T, Turhan M, Gunasekaran S (2004) Polym Int 53:911–918

    Article  CAS  Google Scholar 

  6. Dai LX, Yu SY (2003) Polym Adv Technol 14:449–457

    Article  CAS  Google Scholar 

  7. Amiya S, Tsuchiya S, Qian R, Nakajim A (1990) Pure Appl Chem 62:2139–2146

    Article  CAS  Google Scholar 

  8. Xiao S, Huang R, Feng X (2006) J Membr Sci 286:245–254

    Article  CAS  Google Scholar 

  9. US Pat., 30879320, 1990.

    Google Scholar 

  10. Xue B, Zhang J, Zhou T (2015) Anal Bioanal Chem 407:8765–8771

    Article  CAS  Google Scholar 

  11. Roth RW, Patella LJ, Williams BL (1965) J Appl Polym Sci 9:1083–1087

    Article  CAS  Google Scholar 

  12. Mansur HS, Orefice RL, Mansur AAP (2004) Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  13. Hennink WE, Nostrum CF (2002) Adv Drug Deliv Rev 54:13–36

    Article  CAS  Google Scholar 

  14. Mitic Z, Cakic M, Nikolic GS (2010) Spectroscopy 24:269–275

    Article  Google Scholar 

  15. Mitic Z, Cakic M, Nikolic GM, Nikolic R, Nikolic GS, Pavlovic R, Santaniello E (2011) Carbohydr Res 346:434–441

    Article  CAS  Google Scholar 

  16. Nikolic GS, Cakic M, Mitic Z, Ilic L (2008) J Coord Chem 34:322–328

    Article  CAS  Google Scholar 

  17. Sugiura K, Hashimoto M, Matsuzawa S, Yamaura K (2011) J Appl Polym Sci 82:1291–1298

    Article  Google Scholar 

  18. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) Mat Sci Eng C-Mater 28:539–548

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhu PC, Edgren D (2010) J Polym Res 17:725–730

    Article  CAS  Google Scholar 

  20. Peng Z, Chen D (2006) J Polym Sci 44:534–540

    Article  CAS  Google Scholar 

  21. Clemenson S, David L, Espuche E (2007) J Polym Sci 45:2657–2672

    Article  CAS  Google Scholar 

  22. Zidan HM (1999) Polym Test 18:449–461

    Article  CAS  Google Scholar 

  23. Sato T, Okaya T (1992) Polym J 24:849–856

    Article  CAS  Google Scholar 

  24. Watanabe A, Morita S, Ozaki Y (2007) Biomacromolecules 8:2969–2975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Deng or Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Ji, L., Deng, J. et al. In situ FTIR spectroscopy study on the rapid dissolution process of modified poly(vinyl alcohol). J Polym Res 23, 209 (2016). https://doi.org/10.1007/s10965-016-1100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1100-8

Keywords

Navigation