Skip to main content
Log in

Effect of chain entanglement on the melt-crystallization behavior of poly(l-lactide) acid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Chain entanglements and the entanglement degree determine many processes and behaviors of polymers. In this work, poly(l-lactide) acid (PLLA) samples with markedly decreased entanglements were obtained via a freeze extraction method and the kinetics of entanglement recovery process of freeze-extracted samples was monitored by dynamic rheology approach. The crystallization kinetics of freeze-extracted PLLA samples was further studied by polarized optical microscope, which revealed that the entanglement degree greatly influences the crystallization of PLLA and lower degree of entanglement or disentanglement was conducive to the melt-crystallization of PLLA. The spherulites grew faster in partially disentangled melt than in well entangled melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferry JD (1981) Viscoelastic properties of polymers. John Wiley&Sons, New York, p 552

    Google Scholar 

  2. Graessley WW (1982) Adv Polym Sci 47:67–117

    Article  CAS  Google Scholar 

  3. Kotliar AM (1990) J Polym Sci B Polym Phys 28:1033–1045

    Article  CAS  Google Scholar 

  4. Ajji A, Carreau PJ, Schreiber HP (1986) J Polym Sci Polym Phys 24:1983–1990

    Article  CAS  Google Scholar 

  5. Lippits DR, Rastogi S, Talebi S, Bailly C (2006) Macromolecules 39:8882–8885

    Article  CAS  Google Scholar 

  6. Huang D, Yang Y, Zhuang G, Li B (2000) Macromolecules 33:461–464

    Article  CAS  Google Scholar 

  7. Lv Y, Lin Y, Chen F, Li F, Shangguan Y, Zheng Q (2015) RSC Adv 5:44800–44811

    Article  CAS  Google Scholar 

  8. Li N, Yang Q, Huang Y, Zhang Q, Zhao W (2014) J Polym Res 21:1–10

    Google Scholar 

  9. Yin W, Yang H, Cheng R (2005) Eur Phys J E 17:1–5

    Article  CAS  Google Scholar 

  10. Rong W, Fan Z, Yu Y, Bu H, Wang M (2005) J Polym Sci B Polym Phys 43:2243–2251

    Article  CAS  Google Scholar 

  11. Mi Y, Xue G, Lu X (2003) Macromolecules 36:7560–7566

    Article  CAS  Google Scholar 

  12. Lu X, Xue G, Mi Y (2010) J Appl Polym Sci 119:2310–2317

    Article  Google Scholar 

  13. Bu H, Gu F, Bao L, Chen M (1998) Macromolecules 31:7108–7110

    Article  CAS  Google Scholar 

  14. Sun Q, Fu Q, Xue G, Chen W (2001) Macromol Rapid Commun 22:1182–1185

    Article  CAS  Google Scholar 

  15. Wang X, Wang Z, Luo K, Huang Y (2011) Macromolecules 44:2844–2851

    Article  CAS  Google Scholar 

  16. Iwata K (2002) Polymer 43:6609–6626

    Article  CAS  Google Scholar 

  17. Boyer RF, Heidenreich RD (1945) J Appl Phys 16:621–639

    Article  CAS  Google Scholar 

  18. Bittiger H, Husemann E (1964) Makromol Chem 75:222–224

    Article  CAS  Google Scholar 

  19. Sun B, Lu Y, Ni H, Wang C (1998) Polymer 39(1):159–163

    Article  CAS  Google Scholar 

  20. Zhou D, Li L, Li Y, Zhang J, Xue G (2003) Macromolecules 36:4609–4613

    Article  CAS  Google Scholar 

  21. Kebarle P, Tang L (1993) Anal Chem 65:972A–986A

    CAS  Google Scholar 

  22. Festag R, Alexandratos SD, Cook KD, Joy DC, Annis B, Wunderlich B (1997) Macromolecules 30:6238–6242

    Article  CAS  Google Scholar 

  23. Smith P, Chanzy HD, Rotzinger BP (1985) Polym Commun 26:258–260

    Article  CAS  Google Scholar 

  24. Smith P, Chanzy HD, Rotzinger BP (1987) J Mater Sci 22:523–531

    Article  CAS  Google Scholar 

  25. Sharma KG (2005) Easily processable ultra high molecular weight polyethylene with narrow molecular weight distribution, Ph.D. Thesis, Eindhoven University of Technology

    Google Scholar 

  26. Pandey A, Champouret Y, Rastogi S (2011) Macromolecules 44:4952–4960

    Article  CAS  Google Scholar 

  27. Wang X, Liu R, Wu M, Wang Z, Huang Y (2009) Polymer 50:5824–5827

    Article  CAS  Google Scholar 

  28. Zhang GB, Zhang JM, Wang SG, Shen DY (2003) J Polymer Sci 41:23–30

    Article  CAS  Google Scholar 

  29. Lin TT, Liu XY, He C (2010) Polymer 51:2779–2785

    Article  CAS  Google Scholar 

  30. Wei XF, Bao RY, Cao ZQ, Yang W, Xie BH, Yang MB (2014) Macromolecules 47:1439–1448

    Article  CAS  Google Scholar 

  31. Chen HM, Du XC, Yang AS (2014) RSC Adv 4:3443–3456

    Article  CAS  Google Scholar 

  32. Zhang ZJ, Cui W, Xu H (2015) RSC Adv 5:16604–16610

    Article  CAS  Google Scholar 

  33. Psarski M, Piorkowska E, Galeski A (2000) Macromolecules 33:916–932

    Article  CAS  Google Scholar 

  34. de Gennes PG (1971) J Chem Phys 55:572–579

    Article  Google Scholar 

  35. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ. Press, Ithaca

    Google Scholar 

  36. Edwards SF (1967) Proc Phys Soc 92:9–13

    Article  CAS  Google Scholar 

  37. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  38. Lippits DR, Rastogi S, Höhne GWM (2006) Phys Rev Lett 96:218–303

    Article  Google Scholar 

  39. Lippits DR (2007) Controlling the melting kinetics of polymers; a route to a new melt state, Ph.D. Thesis, Eindhoven University of Technology

    Google Scholar 

  40. Talebi S (2008) Disentangled polyethylene with sharp molar mass distribution: implications for sintering, PhD Thesis, Eindhoven University of Technology

    Google Scholar 

  41. Barham P, Sadler DM (1991) Polymer 32:393–395

    Article  CAS  Google Scholar 

  42. Liang T, Zhang Z, Li T, Yang X (2004) Polymer 45:1365–1371

    Article  CAS  Google Scholar 

  43. Chuang J, Grosberg AY, Tanaka T (2000) J Chem Phys 112:6434–6442

    Article  CAS  Google Scholar 

  44. Lippits DR, Rastogi S, Höhne GWH, Mezari B, Magusin PCMM (2007) Macromolecules 40:1004–1010

    Article  CAS  Google Scholar 

  45. Luo C, Sommer JU (2013) ACS Macro Lett 2:31–34

    Article  CAS  Google Scholar 

  46. Manderkern L (1990) Acc Chem Res 23:380–386

    Article  Google Scholar 

  47. Riger J, Mansfield ML (1989) Macromolecules 22:3810–3812

    Article  Google Scholar 

  48. Albrecht T, Strobl G (1995) Macromolecules 28:5827–5833

    Article  CAS  Google Scholar 

  49. Zhang Z, Yang X (2006) Polymer 47:5213–5219

    Article  CAS  Google Scholar 

  50. Hikosaka M (1987) Polymer 28:1257–1264

    Article  CAS  Google Scholar 

  51. Yamazaki S, Gu F, Watanabe K, Okada K, Toda A, Hikosaka M (2006) Polymer 47:6422–6428

    Article  CAS  Google Scholar 

  52. Swapan KG, Hikosaka M, Toda A, Yamazaki S, Yamada K (2002) Macromolecules 35:6985–6991

    Article  Google Scholar 

  53. Yamazaki S, Hikosaka M, Toda A, Wataoka I, Gu F (2002) Polymer 43:6585–6593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC Grants 51303113, 21374065, and 51422305), the Innovation Team Program of Science & Technology Department of Sichuan Province (Grant 2014TD0002), Sichuan Provincial Science Fund for Distinguished Young Scholars (2015JQO003), and State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2014-2-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Mei Li or Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XT., Bao, RY., Li, YM. et al. Effect of chain entanglement on the melt-crystallization behavior of poly(l-lactide) acid. J Polym Res 23, 164 (2016). https://doi.org/10.1007/s10965-016-1060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1060-z

Keywords

Navigation