Skip to main content

Advertisement

Log in

MWCNTs-TiO2 core-shell nanoassemblies for fabrication of poly(vinylidene fluoride) based composites with high breakdown strength and discharged energy density

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dielectric polymer composites with high breakdown strength and discharged energy density have potential applications in modern electric power systems. In this study, composites comprising MWCNTs-TiO2 core-shell nanoparticles and poly(vinylidene fluoride) (PVDF) were fabricated by a solution casting method, followed by a melting and quenching process. The obtained composites are γ-phase PVDF dominated and present a dense structure. By the incorporation of MWCNTs-TiO2 core-shell nanoparticles, the dielectric constant of composites can be significantly enhanced while the dielectric loss of composites remains low. Because of the core-shell structure of well-dispersed MWCNTs-TiO2 and their strong interactions with matrix, high breakdown strength above 175 V/μm can be achieved in the composites. Additionally, the composites exhibit enhanced discharged energy density, which can be as high as 6.4 J/cm3 at 250 V/μm, while the maximum discharged energy density obtained in pure PVDF is only 2.6 J/cm3 (270 V/μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu PH, Shen Y, Guan YH (2014) Adv Mater 24:3172–3178

    CAS  Google Scholar 

  2. Li Z, Fredin LA, Tewari P (2010) Chem Mater 22:5154–5164

    Article  CAS  Google Scholar 

  3. Chu BJ, Zhou X, Ren KL (2006) Science 313:334–336

    Article  CAS  Google Scholar 

  4. Luo SB, Yu SH, Sun R, Wong CP (2014) ACS Appl Mater Interfaces 6:176–182

    Article  CAS  Google Scholar 

  5. Dang ZM, Wang HY, Xu HP (2009) Appl Phys Lett 89:112902-112902-3

  6. Gao L, He JL, Hu J, Li Y (2014) J Phys Chem C 118:831–838

    Article  CAS  Google Scholar 

  7. Lund A, Gustafsson C, Bertilsson H, Rychwalski RW (2011) Compos Sci Technol 71:222–229

    Article  CAS  Google Scholar 

  8. He F, Lau S, Chan HL, Fan JT (2009) Adv Mater 21:710–715

    Article  CAS  Google Scholar 

  9. Dang ZM, Lin YH, Nan CW (2003) Adv Mater 15:1625–1629

    Article  CAS  Google Scholar 

  10. Spitalsky Z, Tasis D, Papagelis K, Galiotis (2010) Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  11. Shafee E, Gamal M, Isa M (2012) J Polym Res 19:1–8

    Article  Google Scholar 

  12. Zhang SH, Zhang NY, Huang C, Ren KL, Zhang QM (2005) Adv Mater 17:1897–1901

    Article  CAS  Google Scholar 

  13. Wang Q, Zhu L (2011) J Polym Sci B: Polym Phys 49:1421–1429

    Article  CAS  Google Scholar 

  14. Zhang WJ, Zhou Z, Li QF, Chen GX (2014) Ind Eng Chem Res 53:6699–6707

    Article  CAS  Google Scholar 

  15. Qiang ZX, Liang GZ, Gu AJ, Yuan L (2014) Ind Eng Chem Res 53:4726–4731

    Article  CAS  Google Scholar 

  16. Yang C, Lin YH, Nan CW (2009) Carbon 47:1096–1101

    Article  CAS  Google Scholar 

  17. Huang X, Feng M, Liu XB (2014) RSC Adv 4:4985–4992

    Article  CAS  Google Scholar 

  18. Wu C, Huang XY, Wu XF, Yu JH, Xie LY, Jiang PK (2012) Compos Sci Technol 72:521–527

    Article  CAS  Google Scholar 

  19. Feng Y, Li LW, Wang JP, Yin JH, Fei WD (2015) J Mater Chem A 3:20313–20321

    Article  CAS  Google Scholar 

  20. Zhang ZC, Gu YZ, Bi JY, Wang SK, Li M, Zhang ZG (2015) Mater Lett 160:16–19

    Article  CAS  Google Scholar 

  21. Liu ZD, Feng Y, Li LW (2015) RSC Adv 5:29017–29021

    Article  CAS  Google Scholar 

  22. Huang XY, Jiang PK (2015) Adv Mater 27:546–554

    Article  CAS  Google Scholar 

  23. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Prog Mater Sci 57:660–723

    Article  CAS  Google Scholar 

  24. Zhang L, Yuan H, Chen G, Wang DR, Han BZ, Dang ZM (2015) Compos Sci Technol 110:126–131

    Article  CAS  Google Scholar 

  25. Yang L, Qiu JH, Ji HL, Zhu KJ, Wang J (2014) J Mater Sci Mater Electron 25:2126–2137

    Article  CAS  Google Scholar 

  26. Ning NY, Bai X, Yang D (2014) RSC Adv 4:4543–4551

    Article  CAS  Google Scholar 

  27. Yang L, Qiu JH, Ji HL, Zhu KJ, Wang J (2014) Compos A: Appl Sci Manuf 65:125–134

    Article  CAS  Google Scholar 

  28. Martins P, Lopes AC, Lanceros-Mendez S (2014) Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  29. Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S (2010) Smart Mater Struct 19:065010

    Article  Google Scholar 

  30. Li L, Zhang MQ, Rong MZ, Ruan WH (2014) RSC Adv 4:3938–3943

    Article  CAS  Google Scholar 

  31. Alamusi, Xue JM, Wu LK (2014) Nanoscale 4:7250–7255

    Article  Google Scholar 

  32. Tang HX, Sodano HA (2013) Appl Phys Lett 102:063901

    Article  Google Scholar 

  33. Li WJ, Meng QJ, Zheng YS, Zhang ZC, Xia WM, Xu Z (2010) Appl Phys Lett 96:192905

    Article  Google Scholar 

  34. Martin CA, Sandler JKW, Shaffer MSP (2004) Compos Sci Technol 64:2309–2316

    Article  CAS  Google Scholar 

  35. Suherman H, Sulong AB, Sahari J (2010) Int J Mech Mater Eng 5:74–79

    Google Scholar 

  36. Imamura R, Silva AB, Gregorio R Jr (2008) J Appl Polym Sci 110:3242–3246

    Article  CAS  Google Scholar 

  37. Tiwari V, Srivastava (2014) J Polym Res 21:1–8

    Article  CAS  Google Scholar 

  38. Gregorio R Jr (2006) J Appl Polym Sci 100:3272–3279

    Article  CAS  Google Scholar 

  39. Gasparini TM, Bretas RES, Silva AB, Gregorio R Jr (2012) J Polym Sci: B: Polym Phys 50:1304–1311

    Article  CAS  Google Scholar 

  40. Javadi A, Xiao YL, Xu WJ, Gong SQ (2012) J Mater Chem 22:830–834

    Article  CAS  Google Scholar 

  41. Chanmal CV, Jog JP (2008) Express Polym Lett 2:294–301

    Article  CAS  Google Scholar 

  42. Yu K, Wang H, Zhou YC, Bai YY, Niu YJ (2013) J Appl Phys 113:034105

    Article  Google Scholar 

  43. Wen F, Xu Z, Xia WM, Wei XY, Zhang ZC (2013) Polym Eng Sci 53:897–904

    Article  CAS  Google Scholar 

  44. Fang LJ, Wu C, Qian R (2014) RSC Adv 4:21010–21017

    Article  CAS  Google Scholar 

  45. Xie LY, Huang XY, Li BW (2013) Phys Chem Chem Phys 15:17560–17569

    Article  CAS  Google Scholar 

  46. Huang XY, Xie LY, Yang K (2014) IEEE Trans Dielectr Electr Insul 21:480–487

    Article  CAS  Google Scholar 

  47. Guo N, Dibenedetto SA, Tewari P (2010) Chem Mater 22:1567–1578

    Article  CAS  Google Scholar 

  48. Luo BC, Wang XH, Wang YP, Li LT (2014) J Mater Chem A 2:510–519

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (973 Program, Grant No National. 2015CB057501), Fundamental Research Funds for the Central Universities (NE2015101& NE2015001). It is also partially supported by the Research Fund of State Key Laboratory of Mechanical Structures (No.0515Y02) and Priority Academic Program Development of Jiangsu Higher Education Instituations (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhao Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Qiu, J., Ji, H. et al. MWCNTs-TiO2 core-shell nanoassemblies for fabrication of poly(vinylidene fluoride) based composites with high breakdown strength and discharged energy density. J Polym Res 23, 65 (2016). https://doi.org/10.1007/s10965-016-0951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0951-3

Keywords

Navigation