Skip to main content
Log in

One pot fabrication of optically active and efficient antibacterial poly(amide-benzimidazole-imide)/Ag bionanocomposite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(amide-benzimidazole-imide) (PABI) containing silver nanoparticles was fabricated through in situ procedure using DMF as a common solvent which leads to spontaneous slow reduction at ambient temperature. UV/vis technique verified silver nanoparticles formation in the polymer matrix. The silver nanoparticles presence was also confirmed using various characterization techniques and their dispersion was verified by microscopic studies (TEM and FE-SEM analysis) which revealed good dispersion of Ag nanoparticles in PABI matrix without aggregation in nano scales sized. Antibacterial properties of the synthesized polymer and PABI/Ag bionanocomposite (BNC) were evaluated against two Gram-negative bacteria, Escherichia coli and Agrobacterium tumefaciens. Impregnation of silver nanoparticles inside the material caused a growth inhibition ring against both bacteria showing antibacterial effectiveness of the nano-material rather than the basic polymer. In addition, in vitro soil burial and weight loss tests were also performed for evaluation of PABI and PABI/Ag BNC biodegradation behavior. PABI/Ag BNC significantly decreased soil bacterial population but increased fungal population compared to PABI buried. However, weight loss was not significantly different for both compounds when they were exposed to colonization by fungal saprophytes for 3 months. At least in spite of having antibacterial behavior, nanoparticle-impregnated material could be decomposed in natural ecosystems due to fungal biodegradations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Biomacromolecules 7:1449–1462

    Article  CAS  Google Scholar 

  2. Kurt P, Wood L, Ohman DE, Wynne KJ (2007) Langmuir 23:4719–4723

    Article  CAS  Google Scholar 

  3. Fuchs AD, Tiller JC (2006) Angew Chem Int Ed 45:6759–6762

    Article  CAS  Google Scholar 

  4. Chalal S, Haddadine N, Bouslah N, Benaboura A (2012) J Polym Res 19:1–8

    Article  CAS  Google Scholar 

  5. Park J, Karim M, Kim I, Cheong I, Kim J, Bae D, Cho J, Yeum J (2010) Colloid Polym Sci 288:115–121

    Article  CAS  Google Scholar 

  6. Liu Y, Liu X, Wang X, Yang J, Yang X-J, Lu L (2010) J Appl Polym Sci 116:2617–2625

    Article  CAS  Google Scholar 

  7. Kong H, Jang J (2008) Langmuir 24:2051–2056

    Article  CAS  Google Scholar 

  8. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) J Mater Chem 21:10330–10335

    Article  CAS  Google Scholar 

  9. Breitwieser D, Spirk S, Fasl H, Ehmann HMA, Chemelli A, Reichel VE, Gspan C, Stana-Kleinschek K, Ribitsch V (2013) J Mater Chem B 1:2022–2030

    Article  CAS  Google Scholar 

  10. Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) J Mater Chem B 1:3477–3485

    Article  CAS  Google Scholar 

  11. Liu B, Shen S, Luo J, Wang X, Sun R (2013) RSC Adv 3:9714–9722

    Article  CAS  Google Scholar 

  12. Pokhrel LR, Dubey B, Scheuerman PR (2014) Environ Sci Nano 1:45–54

    Article  CAS  Google Scholar 

  13. Eigenheer R, Castellanos ER, Nakamoto MY, Gerner KT, Lampe AM, Wheeler KE (2014) Environ Sci Nano 1:238–247

    Article  CAS  Google Scholar 

  14. Ghasemzadeh H, Ghanaat F (2014) J Polym Res 21:1–14

    Article  CAS  Google Scholar 

  15. Wei Q-B, Fu F, Zhang Y-Q, Tang L (2014) J Polym Res 21:1–9

    Google Scholar 

  16. Skewis LR, Reinhard BM (2009) ACS Appl Mater Interfaces 2:35–40

    Article  Google Scholar 

  17. Dias HVR, Batdorf KH, Fianchini M, Diyabalanage HVK, Carnahan S, Mulcahy R, Rabiee A, Nelson K, van Waasbergen LG (2006) J Inorg Biochem 100:158–160

    Article  CAS  Google Scholar 

  18. Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WTS (2007) Langmuir 23:3314–3321

    Article  CAS  Google Scholar 

  19. Tyliszczak B, Pielichowski K (2013) J Polym Res 20:1–5

    Article  CAS  Google Scholar 

  20. Blinova NV, Bober P, Hromádková J, Trchová M, Stejskal J, Prokeš J (2010) Polym Int 59:437–446

    Article  CAS  Google Scholar 

  21. Liu J-H, Hsieh F-M (2010) Polym Compos 31:1352–1359

    Google Scholar 

  22. Correa CM, Faez R, Bizeto MA, Camilo FF (2012) RSC Adv 2:3088–3093

    Article  CAS  Google Scholar 

  23. Hebeish A, Hashem M, El-Hady MMA, Sharaf S (2013) Carbohydr Polym 92:407–413

    Article  CAS  Google Scholar 

  24. Abdel-Mohsen AM, Aly AS, Hrdina R, El-Aref A (2012) J Polym Environ 20:459–468

    Article  CAS  Google Scholar 

  25. Eid M, El-Arnaouty MB, Salah M, Soliman E-S, Hegazy E-S (2012) J Polym Res 19:1–10

    Article  CAS  Google Scholar 

  26. Kufelnicki A, Wozniczka M, Kalinowska-Lis U, Jezierska J, Ochocki J (2013) Polyhedron 53:20–25

    Article  CAS  Google Scholar 

  27. Abd-El-Aziz AS, Shipman PO, Boden BN, McNeil WS (2010) Prog Polym Sci 35:714–836

    Article  CAS  Google Scholar 

  28. Tenza K, Hanton MJ, Slawin AMZ (2009) Organometallics 28:4852–4867

    Article  CAS  Google Scholar 

  29. Boca M, Jameson RF, Linert W (2011) Coord Chem Rev 255:290–317

    Article  CAS  Google Scholar 

  30. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Polym Degrad Stab 95:2126–2146

    Article  CAS  Google Scholar 

  31. Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Adv Drug Deliv Rev 54:933–961

    Article  CAS  Google Scholar 

  32. Luckachan G, Pillai CKS (2011) J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  33. Abdolmaleki A, Mallakpour S, Borandeh S, Sabzalian M (2012) Amino Acids 42:1997–2007

    Article  CAS  Google Scholar 

  34. Mallakpour S, Banihassan K, Sabzalian MR (2013) J Polym Environ 21:568–574

    Article  CAS  Google Scholar 

  35. Mallakpour S, Dehghani M, Sabzalian MR (2013) J Polym Res 20:85–90

    Article  Google Scholar 

  36. Mallakpour S, Dinari M (2013) Amino Acids 44:1021–1029

    Article  CAS  Google Scholar 

  37. Fan Y, Kobayashi M, Kise H (2001) J Polym Sci A Polym Chem 39:1318–1328

    Article  CAS  Google Scholar 

  38. Dutta P, Dey J (2011) Int J Pharm 421:353–363

    Article  CAS  Google Scholar 

  39. Nitta SK, Numata K (2013) Int J Mol Sci 14:1629–1654

    Article  CAS  Google Scholar 

  40. Mallakpour S, Zadehnazari A (2011) Express Polym Lett 5:142–181

    Article  CAS  Google Scholar 

  41. Abdolmaleki A, Bazyar Z (2013) Polym Plast Technol Eng 52:1542–1549

    Article  CAS  Google Scholar 

  42. Murray P, Baron E, Pfaller M, Tenover F, Yolken R (2003) Manual of clinical microbiology. ASM Press, Washington DC

    Google Scholar 

  43. Mallakpour S, Dinari M (2010) Iran Polym J 19:983–1004

    CAS  Google Scholar 

  44. Mallakpour S, Dinari M (2011) Iran Polym J 20:259–279

    CAS  Google Scholar 

  45. Mallakpour S, Dinari M (2012) Ionic liquids as green solvents: progress and prospects, green solvents II; properties and applications of ionic liquids. In: Mohammad A, Inamuddin D (eds) Ionic liquids as green solvents: progress and prospects. Springer, Netherlands, pp 1–32

    Google Scholar 

  46. Pastoriza-Santos I, Liz-Marzán LM (2009) Adv Funct Mater 19:679–688

    Article  CAS  Google Scholar 

  47. Singh N, Khanna PK (2007) Mater Chem Phys 104:367–372

    Article  CAS  Google Scholar 

  48. Leja K, Lewandowicz G (2010) Pol J Environ Stud 19:255–266

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. Further partial financial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry (IUT) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abdolmaleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Abdolmaleki, A., Borandeh, S. et al. One pot fabrication of optically active and efficient antibacterial poly(amide-benzimidazole-imide)/Ag bionanocomposite. J Polym Res 22, 129 (2015). https://doi.org/10.1007/s10965-015-0743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0743-1

Keywords

Navigation