Skip to main content
Log in

Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A previous work reported that the polymorphic crystallization behavior of isotactic polypropylene (iPP) can be efficiently tuned by the combination of controlling the melt structure (i.e., creation of an ordered structure by tuning the fusion temperature Tf by self-nucleation) and the addition of the α-/β-dual-selective nucleation agent (dual-selective β-NA, tradename WBG-II). In this study, we further investigated the impact of isothermal treatment on the polymorphic behavior and the isothermal crystallization kinetics of a β-iPP sample with different melt structures by differential scanning calorimetry (DSC). The results of isothermal crystallization kinetics study illustrated that as Tf decreased gradually from Region I to Region II and Region III, two sharp increases of the crystallization rate took place at the transition temperatures of Region II, showing that the enhancement of β-phase crystallization took place in a certain crystallization rate window. The calculation of the Avrami exponent n revealed that the two-dimensional growth of crystallites with instantaneous nucleation took place before and after the occurrence of the synergetic effect between the ordered structures and the dual-selective β-NA (when Tf ≥ 168 °C). Moreover, it was found that the occurrence of the synergetic effect in the fusion temperature range of Region II can evidently enhance the βc of the sample: by tuning the fusion temperature Tf and the isothermal crystallization temperature Tc, the relative percentage of β-phase (βc) of the single β-iPP sample with only 0.03 wt.% β-NA can be efficiently tuned in the wide βc range of 0 %–95.0 %; meanwhile, the sensitivity of βc to the isothermal crystallization temperature Tc was reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muller AJ, Lorenzo AT, Arnal ML, de Fierro AB, Abetz V (2006) Self-Nucleation Behavior of the Polyethylene Block as Function of the Confinement Degree in Polyethylene-Block-Polystyrene Diblock Copolymers. Macromol Symp 240(1):114–122

    Article  CAS  Google Scholar 

  2. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  3. Arnal M, Sanchez J, Muller A (2001) Miscibility of linear and branched polyethylene blends by thermal fractionation: use of the successive self-nucleation and annealing (SSA) technique. Polymer 42(16):6877–6890

    Article  CAS  Google Scholar 

  4. Lorenzo AT, Muller AJ (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B: Polym Phys 46(14):1478–1487

    Article  CAS  Google Scholar 

  5. Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L (2013) Direct Formation of Isotactic Poly (1-butene) Form I Crystal from Memorized Ordered Melt. Macromolecules 46(18):7399–7405

    Article  CAS  Google Scholar 

  6. Li X, Su F, Ji Y, Tian N, Lu J, Wang Z, Qi Z, Li L (2013) Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter 9(35):8579–8588

    Article  CAS  Google Scholar 

  7. Cavallo D, Gardella L, Portale G, Muller AJ, Alfonso GC (2014) Self-nucleation of isotactic poly (1-butene) in the trigonal modification. Polymer 55(1):137–142

    Article  CAS  Google Scholar 

  8. Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self–nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B: Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  9. Fillon B, Thierry A, Wittmann J, Lotz B (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci Part B: Polym Phys 31(10):1407–1424

    Article  CAS  Google Scholar 

  10. Fillon B, Lotz B, Thierry A, Wittmann J (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B: Polym Phys 31(10):1395–1405

    Article  CAS  Google Scholar 

  11. Lorenzo AT, Arnal ML, Sanchez JJ, Muller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B: Polym Phys 44(12):1738–1750

    Article  CAS  Google Scholar 

  12. Muller A, Hernandez Z, Arnal M, Sanchez J (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polymer bulletin 39(4):465–472

    Article  CAS  Google Scholar 

  13. Reid BO, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, Alamo RG (2013) Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 46(16):6485–6497

    Article  CAS  Google Scholar 

  14. Gao H, Vadlamudi M, Alamo RG, Hu W (2013) Monte Carlo simulations of strong memory effect of crystallization in random copolymers. Macromolecules 46(16):6498–6506

    Article  CAS  Google Scholar 

  15. Michell RM, Lorenzo AT, Muller AJ, Lin MC, Chen HL, Blaszczyk-Lezak I, Martin J, Mijangos C (2012) The crystallization of confined polymers and block copolymers infiltrated within alumina nanotube templates. Macromolecules 45(3):1517–1528

    Article  CAS  Google Scholar 

  16. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cim 15(1):40–51

    Article  CAS  Google Scholar 

  17. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130(1):25–38

    Article  CAS  Google Scholar 

  18. Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19(12):1–11

    Article  CAS  Google Scholar 

  19. Yeh CF, Su AC, Chen M, Sugimoto R (1995) Changes in optical texture of α-spherulites of isotactic polypropylene upon partial melting and recrystallization. J Polym Res 2(3):139–146

    Article  CAS  Google Scholar 

  20. Na B, Li Z, Lv R, Tian N, Zou S (2011) Oriented re-crystallization of polypropylene through partial melting and its dramatic influence on mechanical properties. J Polym Res 18(6):2103–2108

    Article  CAS  Google Scholar 

  21. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F, Xiang M (2014) Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res 21:485. doi:10.1007/s10965-014-0485-5

    Article  Google Scholar 

  22. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39(25):6331–6337

    Article  CAS  Google Scholar 

  23. Ferro DR, Meille SV, Bruckner S (1998) Energy calculations for isotactic Polypropylene: A Contribution to clarify the β Crystalline Structure. Macromolecules 31(20):6926–6934

    Article  CAS  Google Scholar 

  24. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  25. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20(2):1–11

    Article  CAS  Google Scholar 

  26. Bruckner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: A high pressure study. Macromol Rapid Commun 18(1):1–7

    Article  Google Scholar 

  27. Bruckner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16(2–3):361–404

    Article  CAS  Google Scholar 

  28. Li H, Yan S (2011) Surface-Induced polymer crystallization and the resultant sructures and morphologies. Macromolecules 44(3):417–428

    Article  CAS  Google Scholar 

  29. Li H, Sun X, Yan S, Schultz JM (2008) Initial stage of iPP β to α growth transition induced by stepwise crystallization. Macromolecules 41(13):5062–5064

    Article  CAS  Google Scholar 

  30. Li H, Jiang S, Wang J, Wang D, Yan S (2003) Optical microscopic study on the morphologies of isotactic polypropylene induced by Its homogeneity fibers. Macromolecules 36(8):2802–2807

    Article  CAS  Google Scholar 

  31. Liu Q, Sun X, Li H, Yan S (2013) Orientation-induced crystallization of isotactic polypropylene. Polymer 54(17):4404–4421

    Article  CAS  Google Scholar 

  32. Cavallo D, Azzurri F, Balzano L, Funari SS, Alfonso GC (2010) Flow memory and stability of shear-induced nucleation precursors in isotactic Polypropylene. Macromolecules 43(22):9394–9400

    Article  CAS  Google Scholar 

  33. Alfonso FAGC (2008) Insights into formation and relaxation of shear-induced nucleation precursors in isotactic Polystyrene. Macromolecules 41:1377–1383

    Article  Google Scholar 

  34. Alfonso FAGC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728

    Article  Google Scholar 

  35. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800

    Article  CAS  Google Scholar 

  36. Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G, Heck B, Reiter G, Shen C (2012) Effect of shear stress on crystallization of isotactic Polypropylene from a structured melt. Macromolecules 45(21):8933–8937

    Article  CAS  Google Scholar 

  37. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(4):1–12

    Article  Google Scholar 

  38. Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N, N‘-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic Polypropylene. Macromolecules 40(7):2422–2431

    Article  CAS  Google Scholar 

  39. Luo F, Wang K, Ning N, Geng C, Deng H, Chen F, Fu Q, Qian Y, Zheng D (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22(12):2044–2054

    Article  CAS  Google Scholar 

  40. Luo F, Geng C, Wang K, Deng H, Chen F, Fu Q, Na B (2009) New understanding in tuning toughness of β-Polypropylene: The role of β-Nucleated crystalline morphology. Macromolecules 42(23):9325–9331

    Article  CAS  Google Scholar 

  41. Dong M, Guo Z, Yu J, Su Z (2008) Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as β-form nucleating agent. J Polym Sci Part B: Polym Phys 46(16):1725–1733

    Article  CAS  Google Scholar 

  42. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19 (10):1–7. 5

  43. Gulrez SH, Mohsin MEA, Al-Zahrani SM (2013) Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. J Polym Res 20(10):1–9

    Article  CAS  Google Scholar 

  44. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J, Cao Y, Li H, Yang F, Xiang M (2013) Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents —effects of thermal conditions. J Appl Polym Sci 131(7):40115

    Google Scholar 

  45. Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B (2011) Synergistic toughening of polypropylene random copolymer at low temperature: β-Modification and annealing. Mat Sci Eng: A 528(22–23):7052–7059

    Article  CAS  Google Scholar 

  46. Lu Q, Dou Q (2009) β-Crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560

    Article  CAS  Google Scholar 

  47. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li H, Yang F, Xiang M (2014) Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution—the role of dual-selective β-nucleation agent. Polym for Adv Technol 25(1):97–107

    Article  CAS  Google Scholar 

  48. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci 131(6):40027

    Article  Google Scholar 

  49. Kang J, Wang B, Peng H, Chen J, Cao Y, Li H, Yang F, Xiang M (2014) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull 71(3):563–579

    Article  Google Scholar 

  50. Song S, Wu P, Ye M, Feng J, Yang Y (2008) Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer 49(12):2964–2973

    Article  CAS  Google Scholar 

  51. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci 129(5):2663–2670

    Article  CAS  Google Scholar 

  52. Nandi S, Ghosh A (2007) Crystallization kinetics of impact modified polypropylene. J Polym Res 14(5):387–396

    Article  CAS  Google Scholar 

  53. Lorenzo AT, Arnal ML, Albuerne J, Muller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26(2):222–231

    Article  CAS  Google Scholar 

  54. Zhiyong W, Wanxi Z, Guangyi C, Jicai L, Shu Y, Pei W, Lian L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783

    Article  Google Scholar 

  55. Cho K, Li F, Choi J (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer 40:1719–1729

    Article  CAS  Google Scholar 

  56. Varga J (2002) β-Modification of isotactic Polypropylene: Preparation, structure, processing, properties, and application. J Macromol Sci, Part B 41(4):1121–1171

    Article  Google Scholar 

  57. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li H, Yang F, Xiang M (2014) Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution-the role of dual-selective β-nucleation agent. Polym for Adv Technol 25(1):97–107

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We express our sincere thanks to the Sichuan University Scientific Research Foundation for Young Teachers (2012SCU11075) and National Science Foundation of China (NSFC 51203106) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Jinyao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Zhang, J., Chen, Z. et al. Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21, 506 (2014). https://doi.org/10.1007/s10965-014-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0506-4

Keywords

Navigation