Skip to main content
Log in

pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper new pH sensitive nanocomposite beads were prepared by the combination of layered double hydroxides (LDH) and carboxymethyl cellulose (CMC). Ibuprofen (IBU), as a model drug, was intercalated between LDH layers through the co-precipitation method. The synthesized LDH-IBU nanohybrids and nanocomposites beads were characterized using FTIR, XRD, and SEM. In vitro tests of drug delivery in conditions simulating the gastrointestinal tract were carried out to prove the effectiveness of this novel type of nanocomposite beads as a controlled drug delivery system (DDS). The drug release tests revealed a better protection against stomach pH and a controlled liberation in the intestinal tract conditions for new nanocomposite beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. Sastry SV, Nyshadham JR, Fix JA (2000) Recent technological advances in oral drug delivery–a review. Pharm Sci Technol Today 3:138–145

    Article  CAS  Google Scholar 

  2. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    Article  CAS  Google Scholar 

  3. Huh KM, Kang HC, Lee YJ, Bae YH (2012) pH-sensitive polymers for drug delivery. Macromol Res 20:224–233

    Article  CAS  Google Scholar 

  4. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  5. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 64:49–60

    Article  Google Scholar 

  6. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47

    CAS  Google Scholar 

  7. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  Google Scholar 

  8. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surface B 75:1–18

    Article  CAS  Google Scholar 

  9. Malafaya PB, Elvira C, Gallardo A, San Roman J, Reis RL (2001) Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polym Ed 12:1227–1241

    Article  CAS  Google Scholar 

  10. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  Google Scholar 

  11. Huang X, Xiao Y, Lang M (2012) Micelles/sodium-alginate composite gel beads: a new matrix for oral drug delivery of indomethacin. Carbohydr Polym 87:790–798

    Article  CAS  Google Scholar 

  12. Bhattacharya SS, Shukla S, Banerjee S, Chowdhury P, Chakraborty P, Ghosh A (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym Plast Technol 52:795–805

    Article  CAS  Google Scholar 

  13. Rao KM, Mallikarjuna B, Rao KK, Prabhakar MN, Rao KC, Subha MCS (2012) Preparation and characterization of pH sensitive poly (vinyl alcohol)/sodium carboxymethyl cellulose IPN microspheres for in vitro release studies of an anti-cancer drug. Polym Bull 68:1905–1919

    Article  Google Scholar 

  14. Wang S, Zhang Q, Tan B, Liu L, Shi L (2011) pH-Sensitive poly (Vinyl Alcohol)/sodium carboxymethylcellulose hydrogel beads for drug delivery. J Macromol Sci B 50:2307–2317

    Article  CAS  Google Scholar 

  15. Boppana R, Kulkarni RV, Mutalik SS, Setty CM, Sa B (2010) Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. J Microencapsul 27:337–344

    Article  CAS  Google Scholar 

  16. Yang XH, Zhu WL (2007) Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose 14:409

    Article  CAS  Google Scholar 

  17. Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153

    Article  CAS  Google Scholar 

  18. Stigsson V, Kloow G, Germgard U (2006) The influence of the solvent system used during manufacturing of CMC. Cellulose 13:705

    Article  CAS  Google Scholar 

  19. Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291:75

    Article  CAS  Google Scholar 

  20. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  CAS  Google Scholar 

  21. Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48:291–295

    Article  CAS  Google Scholar 

  22. Oh JM, Biswick TT, Choy JH (2009) Layered nanomaterials for green materials. J Mater Chem 19:2553–2563

    Article  CAS  Google Scholar 

  23. Del Hoyo C (2007) Layered double hydroxides and human health: an overview. Appl Clay Sci 36:103–121

    Article  Google Scholar 

  24. Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  25. Williams GR, O'Hare D (2006) Towards understanding, control and application of layered double hydroxide chemistry. J Mater Chem 16:3065–3074

    Article  CAS  Google Scholar 

  26. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309

    Article  CAS  Google Scholar 

  27. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323

    Article  CAS  Google Scholar 

  28. Wang Q, O'Hare D (2012) Recent advances in the synthesis and application of Layered Double Hydroxide (LDH) nanosheets. Chem Rev 112:4124

    Article  CAS  Google Scholar 

  29. Yadollahi M, Namazi H (2013) Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res 15:1–9

    Article  Google Scholar 

  30. Aisawa S, Sasaki S, Takahashi S, Hirahara H, Nakayama H, Narita E (2006) Intercalation of amino acids and oligopeptides into Zn–Al layered double hydroxide by coprecipitation reaction. J Phys Chem Solids 67:920–925

    Article  CAS  Google Scholar 

  31. Lu X, Meng L, Li H, Du N, Zhang R, Hou W (2012) Facile fabrication of ibuprofen-LDH nanohybrids via a delamination/reassembling process. Mater Res Bull 48:1512–1517

    Article  Google Scholar 

  32. Carlino S (1997) The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ion 98:73–84

    Article  CAS  Google Scholar 

  33. Rossi C, Schoubben A, Ricci M, Perioli L, Ambrogi V, Latterini L, Aloisi GG, Rossi A (2005) Intercalation of the radical scavenger ferulic acid in hydrotalcite-like anionic clays. Int J Pharm 295:47–55

    Article  CAS  Google Scholar 

  34. Gasser MS (2009) Inorganic layered double hydroxides as ascorbic acid (vitamin c) delivery system—Intercalation and their controlled release properties. Colloid Surface B 73:103–109

    Article  CAS  Google Scholar 

  35. Rogez G, Massobrio C, Rabu P, Drillon M (2011) Layered hydroxide hybrid nanostructures: a route to multifunctionality. Chem Soc Rev 40:1031–1058

    Article  CAS  Google Scholar 

  36. Kuang Y, Zhao L, Zhang S, Zhang F, Dong M, Xu S (2010) Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3:5220–5235

    Article  CAS  Google Scholar 

  37. Costantino U, Ambrogi V, Nocchetti M, Perioli L (2008) Hydrotalcite-like compounds: versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mater 107:149–160

    Article  CAS  Google Scholar 

  38. Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495–9504

    Article  CAS  Google Scholar 

  39. Zhang JP, Wang Q, Xie XL, Li X, Wang AQ (2010) Preparation and swelling properties of pH‐sensitive sodium alginate/layered double hydroxides hybrid beads for controlled release of diclofenac sodium. J Biomed Mater Res B 92:205–214

    Article  Google Scholar 

  40. Mahkam M, Davatgar M, Rezvani Z, Nejati K (2013) Preparation of pH-Sensitive polymers/layered double hydroxide hybrid beads for controlled release of insulin. Int J Polym Mater 62:57–60

    Article  CAS  Google Scholar 

  41. Ambrogi V, Perioli L, Ricci M, Pulcini L, Nocchetti M, Giovagnoli S, Rossi C (2008) Eudragit® and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery. Micropor Mesopor Mat 115:405–415

    Article  CAS  Google Scholar 

  42. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Razavi-Nouri M (2008) Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. J Polym Res 15:173

    Article  CAS  Google Scholar 

  43. Olanrewaju J, Newalkar BL, Mancino C, Komarneni S (2000) Simplified synthesis of nitrate form of layered double hydroxide. Mater Lett 45:307–310

    Article  CAS  Google Scholar 

  44. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents—I. Intercalation and in vitro release of ibuprofen. Int J Pharmaceut 220:23–32

    Article  CAS  Google Scholar 

  45. Evans DG, Slade RCT (2005) Structural aspects of layered double hydroxides. Struct Bond 119:1

    Google Scholar 

  46. Li J, Lu J, Li Y (2009) Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112:261

    Article  CAS  Google Scholar 

  47. Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58:185

    Article  CAS  Google Scholar 

  48. Yadollahi M, Namazi H, Barkhordari S (2014) Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohyd Polym, accepted manuscript available online

  49. Kim MS, Park SJ, Gu BK, Kim CH (2012) Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262:28

    Article  CAS  Google Scholar 

  50. Angadi SC, Manjeshwar LS, Aminabhavi TM (2012) Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int J Biol Macromol 51:45

    Article  CAS  Google Scholar 

  51. Kim B, Peppas NA (2002) Complexation phenomena in pH-responsive copolymer networks with pendent saccharides. Macromolecules 35:9545

    Article  CAS  Google Scholar 

  52. Zakhireh S, Mahkam M, Yadollahi M, Jafarirad S (2014) Investigation of pH-sensitive galactopyranoside glycol hydrogels as effective vehicles for oral drug delivery. J Polym Res 21:1

    Article  CAS  Google Scholar 

  53. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents—I. Intercalation and in vitro release of ibuprofen. Int J Pharmaceut 220:23

    Article  CAS  Google Scholar 

  54. Khan AI, Lei L, Norquist AJ, O’Hare D (2001) Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chem Commun 22:2342

    Article  Google Scholar 

  55. Li B, He J, Evans DG, Duan X (2004) Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int J Pharmaceut 287:89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, S., Yadollahi, M. & Namazi, H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21, 454 (2014). https://doi.org/10.1007/s10965-014-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0454-z

Keywords

Navigation