Skip to main content
Log in

pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel semi-interpenetrating network (semi-IPN) polymeric hydrogels for theophylline drug delivery were prepared using carboxymethyl chitosan (CMC), acrylamide (AM), and polyvinylpyrrolidone (PVP) as synthetic components in the presence of N,N-methylene bisacrylamide as a crosslinker and potassium persulfate as an initiator. The structures of the CMC/polyacrylamide (PAM)/PVP hydrogels were characterized by Fourier transform infrared spectroscopy. Scanning electron microscope observations indicated that the hydrogels had morphologies characterized by a three-dimensional network, with crosslinking rates of 76–82 %. As the PVP content was increased, the porous structure became more compact and the pore size smaller. Investigations of the swelling kinetics of the hydrogels demonstrated that their equilibrium swelling ratios depended on their compositional ratios, ionic strengths, and the pH of the buffer solution. In particular, the hydrogels swelled at pH 7.4 but shrank at pH 1.4, resulting in a larger swelling ratio in alkaline solution than in acidic solution. The swelling ratios of the hydrogels decreased with increasing ionic strength. Studies of the in vitro release of the model drug theophylline from the hydrogels revealed that the drug release profile depended on the pH of the medium and the hydrogel composition. As the PVP content was increased, the drug release rate rose at pH 1.4, whereas the rate decreased at pH 7.4. The reason for the faster drug release at pH 7.4 than at pH 1.4 may be the occurrence different mechanisms at different pH values: non-Fickian behavior in PBS at pH 11.7 and Fickian diffusion in PBS at pH 1.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5a–c
Fig. 6
Fig. 7
Fig. 8a–b
Fig. 9

Similar content being viewed by others

References

  1. Zhang KP, Luo YL, Li ZQ (2007) Soft Mater 5:183–195

    Article  CAS  Google Scholar 

  2. Lin CC, Metters AT (2006) Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  Google Scholar 

  3. Üzüm ÖB, Karadağ E (2007) J Polym Res 14:483–488

    Article  Google Scholar 

  4. Luo YL, Zhang KP, Wei QB, Liu ZQ, Chen YS (2009) Acta Biomater 5:316–327

    Article  CAS  Google Scholar 

  5. Vashist A, Gupta YK, Ahmad S (2012) Carbohydr Polym 87:1433–1439

    Article  CAS  Google Scholar 

  6. Vermonden T, Censi R, Hennink WE (2012) Chem Rev 112:2853–2888

    Article  CAS  Google Scholar 

  7. Ayman MA, Nermine EM, Arndt KF (2006) J Polym Res 13:53–63

    Article  Google Scholar 

  8. Leontine AG, Martin M (1992) Polym Bull 27:681–688

    Article  Google Scholar 

  9. Artyukhov AA, Shtilman MI, Kuskov AN, Fomina AP, Lisovyy DE, Golunova AS, Tsatsakis AM (2011) J Polym Res 18:667–673

    Article  CAS  Google Scholar 

  10. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN (2008) Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  11. Wang WB, Wang AQ (2010) Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  12. Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS, Sairam M, Aminabhavi TM (2006) Carbohydr Polym 66:333–344

    Article  Google Scholar 

  13. Ömer BÜ, Erdener K (2007) J Polym Res 14:483–488

    Article  Google Scholar 

  14. Deshpande DS, Bajpai R, Bajpai AK (2012) J Polym Res 19:9938

    Article  Google Scholar 

  15. Nistor MT, Chiriac AP, Nita LE, Vasile C, Bercea M (2013) J Polym Res 20:86

    Article  Google Scholar 

  16. Mi FL, Tan YC, Liang HF, Sung HW (2002) Biomaterials 23:181–191

    Article  CAS  Google Scholar 

  17. Thomas C, Sharma P (1990) Biomater Artif Cells Artif Organs 18:1–24

    Google Scholar 

  18. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) J Control Release 96:285–300

    Article  CAS  Google Scholar 

  19. Sailaja AK, Amareshwar P, Chakravarty PR (2010) J Pharm Biol Chem Sci 1:474–484

    Google Scholar 

  20. Yao KD, Liu J, Cheng GX, Zhao RZ, Wang WH, Wei L (1998) Polym Int 45:191–194

    Article  CAS  Google Scholar 

  21. Riva R, Ragelle H, Rieux A, Duhem N, Jérôme C, Préat V (2011) Adv Polym Sci 244:19–44

    Article  CAS  Google Scholar 

  22. Chen LY, Tian Z, Du YM (2004) Biomaterials 25:3725–3732

    Article  CAS  Google Scholar 

  23. Li F, Liu WG, Yao KD (2002) Biomaterials 23:343–347

    Article  Google Scholar 

  24. Shin MN, Kang HS, Park TG, Yang JW (2002) Polym Bull 47:451–456

    Article  CAS  Google Scholar 

  25. Kundu PP, Jindal SK, Goswami M (2013) Bull Mater Sci 36:175–182

    Article  CAS  Google Scholar 

  26. Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) J Control Release 68:23–30

    Article  CAS  Google Scholar 

  27. Illum L (1998) Pharm Res 15:1326–1331

    Article  CAS  Google Scholar 

  28. Zhou C, Wu Q (2011) Colloid Surf B 84:155–162

    Article  CAS  Google Scholar 

  29. Kundu B, Kundu SC (2012) Biomaterials 33:7456–7467

    Article  CAS  Google Scholar 

  30. Zhao Q, Sun J, Lin Y, Zhou Q (2010) React Funct Polym 70:602–609

    Article  CAS  Google Scholar 

  31. Turan E, Demirci S, Caykara T (2009) J Appl Polym Sci 111:108–113

    Article  CAS  Google Scholar 

  32. Zhao L, Xu L, Mitomo H, Yoshi F (2006) Carbohydr Polym 64:473–480

    Article  CAS  Google Scholar 

  33. Wei QB, Luo YL, Fu F, Zhang YQ, Ma RX (2013) J Appl Polym Sci 129:806–814

    Article  CAS  Google Scholar 

  34. Hayashi T, Kanbe H, Okada M, Suzuki M, Ikeda Y (2005) Int J Pharm 304:91–101

    Article  CAS  Google Scholar 

  35. Katime I, Novoa R, Díaz de Apodaca E, Mendizábal E, Puig J (1999) Polym Test 18:559–566

  36. Pitt CG (1990) Int J Pharm 59:173

    Article  CAS  Google Scholar 

  37. Heller J, Chang AC, Rodd G, Grodsky GM (1990) J Control Release 13:295

    Article  CAS  Google Scholar 

  38. Siegal RA, Firstone BNA (1988) Macromolecules 21:3254

    Article  Google Scholar 

  39. Singh Yadav HK, Shivakumar HG (2012) ISRN Pharm 12:1–10

    Google Scholar 

  40. Lü S, Liu M, Ni B, Gao C (2010) J Polym Sci B Polym Phys 48:1749–1756

    Article  Google Scholar 

  41. Sun T, Xu PX, Liu Q, Xue J, Xie WM (2003) Eur Polym J 39:189–192

    Article  CAS  Google Scholar 

  42. Şanlı O, Ay N, Işıklan N (2007) Eur J Pharm Biopharm 65:204–214

    Article  Google Scholar 

  43. Liu ZQ, Luo YL, Zhang KP (2008) J Biomater Sci Polym Ed 19:1503–1520

    Article  CAS  Google Scholar 

  44. Mahdavinia GR, Zohuriaan-Mehr MJ, Pourjavadi A (2004) Polym Adv Technol 15:173–180

    Article  CAS  Google Scholar 

  45. Emileh A, Farahani EV, Imani M (2007) Eur Polym J 43:1986–1991

    Article  CAS  Google Scholar 

  46. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) Carbohydr Polym 92:719–725

    Article  CAS  Google Scholar 

  47. Chang C, He M, Zhou J, Zhang L (2011) Macromolecules 44:1642–1648

    Article  CAS  Google Scholar 

  48. Zhang JJ (1998) Xinyang Norm Coll 11:191–195

    Google Scholar 

  49. Rička J, Tznaka T (1984) Macromolecules 17:2916–2921

    Article  Google Scholar 

  50. Lin YW, Chen Q, Luo HB (2007) Carbohydr Res 342:87–95

    Article  CAS  Google Scholar 

  51. Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J (2005) Biomaterials 26:4677–4683

    Article  CAS  Google Scholar 

  52. Xu XD, Zhang XZ, Cheng SX, Zhuo RX, Kennedy JF (2007) Carbohydr Polym 68:416–423

    Article  CAS  Google Scholar 

  53. Pourjavadi A, Barzegar S, Zeidabadi F (2007) React Funct Polym 67:644–654

    Article  CAS  Google Scholar 

  54. Brannon-Peppas L, Peppas NA (1991) Int J Pharm 70:53–60

    Article  CAS  Google Scholar 

  55. Zhang YX, Wu FP, Li MZ, Wang EJ (2005) Polymer 46:7695–7700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation for the financial support of the Natural Science Foundation of China (grants 21103146 and 21003103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Bo Wei or Feng Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, QB., Fu, F., Zhang, YQ. et al. pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release. J Polym Res 21, 453 (2014). https://doi.org/10.1007/s10965-014-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0453-0

Keywords

Navigation