Skip to main content

Advertisement

Log in

The photopolymerization kinetics features of naphthyl(Meth)acrylates in melts

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The photopolymerization kinetics of 1-, 2- and 1-bromo-2-naphthyl(meth)acrylates under an ultraviolet (UV) and visible light (VL) irradiation was investigated. It was found that a reactivity of the monomers in melts at temperatures 7 °C higher then Tmp near a melting point (photoinitiator dimetoxyphenylacetophenone) under UV irradiation decreases in row: 1-bromo-2-naphthylmethacrylate (1-Br-2-NМА) > 1-bromo-2-naphthylacrylate (1-Br-2-NА) > 2-naphthylmethacrylate (2-NМА) > 2-naphthylacrylate (2-NА) > 1-naphthylmethacrylate (1-NМА) > 1-naphthylacrylate (1-NА). It should be note that photopolymerization of naphthyl(meth)acrylates under UV irradiation occurs in the absence of a photoinitiator as well. Another trend takes places under VL irradiation: 2-NМА > 1-Br-2-NМА > 1-NМА > 1-Br-2-NА > 2-NА > 1-NА (photoinitiator 9,10-phenantrenquinone). The naphthylmethacrylates are shown to be more active as compared to the naphthylacrylates under UV and VL irradiation. X-ray structural analyses of naphthyl(meth)acrylates were carried out. It is shown that using information about naphthyl(meth)acrylates crystals structure allows rationally interpret the regularities of the photopolymerization kinetics these compounds under VL irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Treushnikov VM, Chesnokov SA (2008) J Photochem Photobiol A 196:201–209

    Article  CAS  Google Scholar 

  2. Medvedevskikh YG, Kytsya AR, Bazylyak LI, Turovsky AA, Zaikov GE (2004) Stationary and non-stationary kinetics of photoinitiated polymerization. VSP (Brill Academic Publishers), Utrecht

    Google Scholar 

  3. Heller C, Schwentenwein M, Russmuller G, Koch T, Moser D, Schopper H, Varga F, Stampfl J, Liska R (2011) J Polym Sci Part A Polym Chem 49:650–661

    Article  CAS  Google Scholar 

  4. Dong W, Li H, Chen M, Ni Z, Zhao J, Yang H, Gijsman P (2011) J Polym Res 18:1239–1247

    Article  CAS  Google Scholar 

  5. Kargin VA, Kabanov VA, Zubov VP, Papisov IM (1962) Polymer Sci USSR 3:136–146

    Article  Google Scholar 

  6. Semenov NN (1961) J Polym Sci 55:563–596

    Article  Google Scholar 

  7. Korolev GV, Mogilevich MM, Ilin AA (2002) Association of Liquid Organic Compounds. Mir, Moscow.

  8. Chesnokov SA, Zakharina MY, Shaplov AS, Chechet YV, Lozinskaya EI, Mel’nik OA, Vygodskii YS, Abakumov GA (2008) Polym Int 57:538–545

    Article  CAS  Google Scholar 

  9. Chesnokov SA, Zakharina M, Shaplov AS, Lozinskaya EI, Malyshkina IA, Abakumov GA, Vidal F, Vygodskii YS (2010) J Polym Sci Part A: Polym Chem 48:2388–2409

    Article  CAS  Google Scholar 

  10. Chesnokov SA, Fukin GK, Chechet YV, Mamysheva ON, Cherkasov VK (2006) Polymer Sci Series A 48:606–611

    Article  Google Scholar 

  11. Chesnokov SA, Zakharina MY, Fukin GK, Mamisheva ON, Chechet Yu V, Abakumov GA (2009) Polymer Sci Series A 51:991–1001

    Article  Google Scholar 

  12. Zakharina MY, Fukin GK, Chesnokov SA, Mamisheva ON, Chechet YV, Shaplov AS, Abakumov GA (2010) Polymer Sci Series B 52:203–213

    Article  Google Scholar 

  13. Krijn MPCM, Ijzerman WL, De Zwart ST, Cornelissen HJ. (Koninklijke Philips Electronics N.V.). U.S. Patent 7,876,397 B2, January 25, 2011

  14. Cabeza S, Grand-Clement D, Koike Y. (Essilor International Compagnie Generale d’Optiqe). U.S. Patent 6,229,654 B1, May 8, 2001

  15. Gordon AG, Ford RA, The Chemist’s Companion (1972) A handbook of practical data, techniques and references. Wiley, New York

    Google Scholar 

  16. Hilgetag G, Martini A (1964) Organisch-chemishe experimentierkunst. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  17. Sheldrick GM (2000) Structure Determination Software Suite. SHELXTL v. 6.12. Bruker AXS, Madison, Wisconsin, USA.

  18. www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk)

  19. Odian G (1970) Principles of polymerization. McGraw-Hill Book Company, New York

    Google Scholar 

  20. Arulin VI, Efimof LI (1970) Trudy po Khimii i Khimicheskoi Teknol 2:74–77

    Google Scholar 

  21. Wayne RP (1988) Principles and applications of photochemistry. Oxford University Press, Oxford

    Google Scholar 

  22. Bekker GO, Böttcher H, Dietz F et al (1976) Einfuhrung in die photochemie. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  23. Maruyama K, Otsuki T, Shindo H, Maruyama T (1971) Bull Chem Soc Japan 44:2000

    Article  CAS  Google Scholar 

  24. Jimenez Z, Bounds C, Houle C, Lowe A, Zhou H (2007) J Polym Sci Part A: Polym Chem 45:3009–3012

    Article  CAS  Google Scholar 

  25. Andrzejewska E, Linden L, Rabek JF (1998) Macromol Chem Phys 199:441–449

    Article  CAS  Google Scholar 

  26. Shonberg A (1958) Preparative organische photochemie. Springer – Verlag, Berlin, Gottingen

    Book  Google Scholar 

  27. Shurygina MP, Chesnokov SA, Lopatin MA, Cherkasov VK, Abakumov GA (2004) Russ. Chem Bull (Int Ed) 53(11):2485–2489

    Article  CAS  Google Scholar 

  28. Shurygina MP, Kurskii YA, Chesnokov SA, Abakumov GA (2008) Tetrahedron 64(7):1459–1466

    Article  CAS  Google Scholar 

  29. Maruyama K, Ono K, Osugi J (1972) Bull Chem Soc Jpn 45:847

    Article  CAS  Google Scholar 

  30. Maruyama K, Shindo H, Otsuki T, Maruyama T (1971) Bull Chem Soc Japan 44:2756–2760

    Article  CAS  Google Scholar 

  31. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor RJ (1987) Chem Soc Perkin Trans II 12:1–19

    Article  Google Scholar 

  32. Nakanishi H, Sasada J (1977) Bull Chem Soc Japan 50:3182–3185

    Article  CAS  Google Scholar 

  33. Coates GW, Dunn AR, Henling LM, Ziller JW, Lobkovsky EB, Grubbs RH (1998) J Am Chem Soc 120:3641–3649

    Article  CAS  Google Scholar 

  34. Sonoda Y, Goto M, Tsuzuki S, Akiyama H, Tamaoki N (2009) J Fluor Chem 130:151–157

    Article  CAS  Google Scholar 

  35. Odian G (2004) Principles of polymerization. Wiley, New Jersey

    Book  Google Scholar 

  36. Erol I, Soykan C, Ilter Z, Ahmedzade M (2003) Polym Degrad Stab 81:287–295

    Article  CAS  Google Scholar 

  37. Coskun M, Erol I, Coskun MF, Demirelli K (2002) Polym Degrad Stab 78:49–55

    Article  CAS  Google Scholar 

  38. Erol I, Sarkaya S (2012) J Polym Res 19:9957–9969

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research (N 12-03-01092_a, 13-03-12225-ofi_m, 13-03-97064-r_povolj’e_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman S. Kovylin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, S.A., Kovylin, R.S., Mamysheva, O.N. et al. The photopolymerization kinetics features of naphthyl(Meth)acrylates in melts. J Polym Res 21, 441 (2014). https://doi.org/10.1007/s10965-014-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0441-4

Keywords

Navigation