Skip to main content
Log in

Formation of double skin-core orientated structure in injection-molded Polyethylene parts: Effects of ultra-high molecular weight Polyethylene and temperature field

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the current work, the effect of ultra-high molecular weight polyethylene (UHMWPE) and temperature field on the unique double skin-core orientated structure and mechanical properties of high-density polyethylene (HDPE) parts molded by multi-melt multi-injection molding (MMMIM) were investigated using a variety of characterization techniques including rheological experiments, scanning electron microscopy (SEM), synchrotron small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) and tensile testing. The SEM results revealed that a distinct double skin-core orientated structure was formed in samples molded via MMMIM. That is, compact lamellar together with typical shish-kebab structures was formed from the skin to the sub-skin, and large area of oriented lamellar was formed again near the core layer due to the significantly improved relaxation time of the UHMWPE/HDPE blend and intensive shear flow resulted from the secondary melt penetration process. Additionally, with increase temperature of the second melt, the oriented lamellar near the core layer tended to develop into irregularly-arranged lamellar and the double skin-core orientated structure weakened gradually. These results were further authenticated by SAXS. Results of tensile testing indicated that with reduced temperature of second melt, samples with higher tensile strength and modulus were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kmetty Á, Bárány T, Karger-Kocsis J (2010) Self-reinforced polymeric materials: a review. Prog Polym Sci 35:1288–1310

    Article  CAS  Google Scholar 

  2. Arvidson SA, Khan SA, Gorga RE (2010) Mesomorphic − α-Monoclinic phase transition in isotactic polypropylene: A study of processing effects on structure and mechanical properties. Macromolecules 43:2916–2924

    Article  CAS  Google Scholar 

  3. Wang K, Chen F, Li Z, Fu Q (2013) Control of the hierarchical structure of polymer articles via novel processing: From traditional processing toward “structuring” processing. Prog Polym Sci

  4. Lin X, Fin CR, Ren D, Wang K, Coates P (2013) Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection molding. J Polym Res 20:1–12

    Google Scholar 

  5. Wang GL, Zhou YG, Wang SJ, Chen JB, Zhang XL, Lu S (2013) Cylindritic structures of isotactic polypropylene molded by sequential co-injection molding. J Polym Res 20:1–11

    Google Scholar 

  6. Hsiao BS, Yang L, Somani RH, Avila-Orta CA, Zhu L (2005) Unexpected shish-kebab structure in a sheared polyethylene melt. Phys Rev Lett 94:117802

    Article  Google Scholar 

  7. Keller A, Kolnaar HW (1998) Flow-induced orientation and structure formation. II. structure development during processing. Mater Sci Technol

  8. Simis KS, Bistolfi A, Bellare A, Pruitt LA (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 27:1688–1694

    Article  CAS  Google Scholar 

  9. Yang HR, Lei J, Li L, Fu Q, Li ZM (2012) Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules 45:6600–6610

    Article  CAS  Google Scholar 

  10. Hossain D, Tschopp M, Ward D, Bouvard J, Wang P, Horstemeyer M (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083

    Article  CAS  Google Scholar 

  11. Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Men Y (2009) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small-and wide-angle X-ray scattering studies. Polymer 50:4101–4111

    Article  CAS  Google Scholar 

  12. Pennings A (1965) Kolloid ZZ Polym. 1965, 205, 160.[CrossRef],[CAS] Fractionation of polymers by crystallization from solution. III. The morphology of fibrillar polyethylene crystals grown in solution Pennings, AJ; Kiel, AM. Kolloid Zeitschrift & Zeitschrift fuer Polymer 205:160–162

    Article  CAS  Google Scholar 

  13. Hobbs J, Humphris A, Miles M (2001) In-situ atomic force microscopy of polyethylene crystallization.1. crystallization from an oriented backbone. Macromolecules 34:5508–5519

    Article  CAS  Google Scholar 

  14. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  15. Kornfield JA, Kumaraswamy G, Issaian AM (2002) Recent advances in understanding flow effects on polymer crystallization. Ind Eng Chem Res 41:6383–6392

    Article  CAS  Google Scholar 

  16. Bushman A, McHugh A (1997) Transient flow‐induced crystallization of a polyethylene melt. J App Polym Sci 64:2165–2176

    Article  CAS  Google Scholar 

  17. Duplay C, Monasse B, Haudin JM, Costa JL (1999) Shear-induced crystallization of polypropylene: influence of molecular structure. Polym Int 48:320–326

    Article  CAS  Google Scholar 

  18. Mackley M, Keller A (1973) Flow induced crystallization of polyethylene melts. Polymer 14:16–20

    Article  CAS  Google Scholar 

  19. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316:1014–1017

    Article  CAS  Google Scholar 

  20. Nogales A, Hsiao B, Somani R, Srinivas S, Tsou A, Balta-Calleja F, Ezquerra T (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small and wide-angle X-ray scattering studies. Polymer 42:5247–5256

    Article  CAS  Google Scholar 

  21. Dikovsky D, Marom G, Avila-Orta CA, Somani RH, Hsiao BS (2005) Shear-induced crystallization in isotactic polypropylene containing ultra-high molecular weight polyethylene oriented precursor domains. Polymer 46:3096–3104

    Article  CAS  Google Scholar 

  22. Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies. Macromolecules 35:9096–9104

    Article  CAS  Google Scholar 

  23. Van Meerveld J, Peters GW, Hütter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheologica Acta 44:119–134

    Article  CAS  Google Scholar 

  24. Goodship V, Love J (2002) Multi-material injection moulding, vol 145. iSmithers Rapra Publishing

  25. Mai F, Wang K, Yao M, Deng H, Chen F, Fu Q (2010) Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J Phys Chem B 114:10693–10702

    Article  CAS  Google Scholar 

  26. Lei J, Jiang C, Shen KZ (2004) Biaxially self-reinforced high‐density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J App Polym Sci 93:1584–1590

    Article  CAS  Google Scholar 

  27. Keum JK, Zuo F, Hsiao BS (2008) Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 41:4766–4776

    Article  CAS  Google Scholar 

  28. Zhang K, Liu Z, Yang B, Yang W, Lu Y, Wang L, Sun N, Yang MB (2011) Cylindritic structures of high-density polyethylene molded by multi-melt multi-injection molding. Polymer 52:3871–3878

    Article  CAS  Google Scholar 

  29. Cox W, Merz E (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  30. Olley R, Bassett D (1982) An improved permanganic etchant for polyolefines. Polymer 23:1707–1710

    Article  CAS  Google Scholar 

  31. Zhai YM, Wang Y, Yang W, Xie BH, Yang MB (2009) Dynamic rheological behavior of copolymerized linear low-density polyethylenes: Effect of molecular weight and its distribution. J Macromol Sci B 48:844–855

    Article  CAS  Google Scholar 

  32. Carreau PJ, MacDonald IF, Bird RB (1968) A nonlinear viscoelastic model for polymer solutions and melts—II. Chem Eng Sci 23:901–911

    Article  CAS  Google Scholar 

  33. Byron Bird R, Carreau PJ (1968) A nonlinear viscoelastic model for polymer solutions and melts—I. Chem Eng Sci 23:427–434

    Article  Google Scholar 

  34. Huang SX, Lu CJ (2006) Stress relaxation characteristics and extrudate swell of the IUPAC-LDPE melt. J Non-Newtonian Fluid Mech 136:147–156

    Article  CAS  Google Scholar 

  35. Des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. Europhysics Lett 5:437

    Article  CAS  Google Scholar 

  36. An Y, Gu L, Wang Y, Li YM, Yang W, Xie BH, Yang MB (2012) Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends. Mater Des 35:633–639

    Article  CAS  Google Scholar 

  37. An Y, Bao RY, Liu ZY, Wu XJ, Yang W, Xie BH, Yang MB (2012) Unusual hierarchical structures of mini-injection molded isotactic polypropylene/ultrahigh molecular weight polyethylene blends. Eur Polym J 49:538–548

    Article  Google Scholar 

  38. Wang L, Yang MB, Zhang QP, Zhang RY, Wu JJ, Feng JM (2013) Hierarchical crystalline structures and dynamic mechanical properties of injection‐molded bars of HDPE: attributes of temperature field. Polym Adva Technol 24:541–550

    Article  Google Scholar 

  39. Hu W, Frenkel D, Mathot VB (2002) Simulation of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules 35:7172–7174

    Article  CAS  Google Scholar 

  40. Elmoumni A, Winter HH, Waddon AJ, Fruitwala H (2003) Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules 36:6453–6461

    Article  CAS  Google Scholar 

  41. Yang L, Somani RH, Sics I, Hsiao BS, Kolb R, Fruitwala H, Ong C (2004) Shear-induced crystallization precursor studies in model polyethylene blends by in-situ rheo-SAXS and rheo-WAXD. Macromolecules 37:4845–4859

    Article  CAS  Google Scholar 

  42. Hu X, Xu JZ, Zhong GJ, Luo XL, Li ZM (2011) Shear induced crystallization of poly (L-lactide) and poly (ethylene glycol)(PLLA-PEG-PLLA) copolymers with different block length. J Polym Res 18:675–680

    Article  CAS  Google Scholar 

  43. Cao W, Wang K, Zhang Q, Du R, Fu Q (2006) The hierarchy structure and orientation of high density polyethylene obtained via dynamic packing injection molding. Polymer 47:6857–6867

    Article  CAS  Google Scholar 

  44. Na B, Wang K, Zhang Q, Du RN, Fu Q (2005) Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer 46:3190–3198

    Article  CAS  Google Scholar 

  45. Na B, Zhang Q, Wang Y, Fu Q (2004) Orientation effects on the deformation and fracture properties of high‐density polyethylene/ethylene vinyl acetate (HDPE/EVA) blends. Polym Int 53:1078–1086

    Article  CAS  Google Scholar 

  46. Su R, Su J, Wang K, Yang C, Zhang Q, Fu Q (2009) Shear-induced change of phase morphology and tensile property in injection-molded bars of high-density polyethylene/polyoxymethylene blends. Eur Polym J 45:747–756

    Article  CAS  Google Scholar 

  47. Jose S, Aprem A, Francis B, Chandy M, Werner P, Alstaedt V, Thomas S (2004) Phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends. Eur Polym J 40:2105–2115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51033003 and 51121001). Particularly, we would also like to express our great thanks to Mr. Chao-liang Zhang for the assistance of SEM observations. The 2D SAXS experiments were kindly performed at the Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wang, L., Zhang, RY. et al. Formation of double skin-core orientated structure in injection-molded Polyethylene parts: Effects of ultra-high molecular weight Polyethylene and temperature field. J Polym Res 21, 432 (2014). https://doi.org/10.1007/s10965-014-0432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0432-5

Keywords

Navigation