Skip to main content

Advertisement

Log in

Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In designing an effective oral delivery system, the harshness of the gastrointestinal tract is a key limitation. Therefore, developing a pH-responsive carrier is crucial. We designed a chitosan/fucoidan nanoparticle (CS/F NP) and evaluated its potential as an oral delivery carrier. The results indicate that the CS/F NPs were successfully prepared based on their electrostatic interactions. They were approximately 380 nm, revealing significant pH-sensitive properties as the weight ratio of CS to F was 1:1. The isoelectric point of the CS/F NPs was 5.7. Using gamma scintigraphy, the 99m Tc-methylene diphosphonate encapsulated CS/F NPs were quite stable at pH 2.5 and decomposed at pH 7.4. For long-term storage, trehalose (20 %, w/v) is a suitable cryoprotectant. The outcome of the transepithelial electric resistance (TEER) of the Caco-2 monolayer shows that CS/F NPs effectively enhanced the opening of the cell tight junction. Briefly, the CS/F NPs developed are promising carriers for an oral delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24:3333–3343

    Article  CAS  Google Scholar 

  2. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan–a review. J Control Release 114:1–14

    Article  CAS  Google Scholar 

  3. Chen MC, Wong HS, Lin KJ, Chen HL, Wey SP, Sonaje K et al (2009) The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials 30:6629–6637

    Article  CAS  Google Scholar 

  4. Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT et al (2008) Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 19:1248–1255

    Article  CAS  Google Scholar 

  5. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  6. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  Google Scholar 

  7. Huang YC, Liu TJ (2012) Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater 8:1048–1056

    Article  CAS  Google Scholar 

  8. Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y (2002) The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1). J Nutr Biochem 13:157–167

    Article  CAS  Google Scholar 

  9. Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC et al (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32:6164–6173

    CAS  Google Scholar 

  10. Sonaje K, Lin KJ, Tseng MT, Wey SP, Su FY, Chuang EY et al (2011) Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials 32:8712–8721

    Article  CAS  Google Scholar 

  11. Senel S, Kremer MJ, Kas S, Wertz PW, Hincal AA, Squier CA (2000) Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21:2067–2071

    Article  CAS  Google Scholar 

  12. Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R et al (2002) Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 19:998–1008

    Article  CAS  Google Scholar 

  13. Li S, Wang XT, Zhang XB, Yang RJ, Zhang HZ, Zhu LZ et al (2002) Studies on alginate-chitosan microcapsules and renal arterial embolization in rabbits. J Control Release 84:87–98

    Article  CAS  Google Scholar 

  14. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    Article  CAS  Google Scholar 

  15. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695

    Article  CAS  Google Scholar 

  16. Senni K, Gueniche F, Foucault-Bertaud A, Igondjo-Tchen S, Fioretti F, Colliec-Jouault S et al (2006) Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 445:56–64

    Article  CAS  Google Scholar 

  17. Sezer AD, Akbuga J (2006) Fucosphere–new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522

    Article  CAS  Google Scholar 

  18. Sezer AD, Cevher E, Hatipoglu F, Ogurtan Z, Bas AL, Akbuga J (2008) The use of fucosphere in the treatment of dermal burns in rabbits. Eur J Pharm Biopharm 69:189–198

    Article  CAS  Google Scholar 

  19. Sezer AD, Akbuga J (2009) Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech 10:1193–1199

    Article  CAS  Google Scholar 

  20. Sezer AD, Akbuga J (2012) The design of biodegradable ofloxacin-based core-shell microspheres: influence of the formulation parameters on in vitro characterization. Pharm Dev Technol 17:118–124

    Article  CAS  Google Scholar 

  21. Huang YC, Yang YT (2013) Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension. J Tissue Eng Regen Med. doi:10.1002/term.1752

    Google Scholar 

  22. Baxter A, Dillon M, Taylor KD, Roberts GA (1992) Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int J Biol Macromol 14:166–169

    Article  CAS  Google Scholar 

  23. Tsai ML, Chang HW, Yu HC, Lin YS, Tsai YD (2011) Effect of chitosan characteristics and solution conditions on gelation temperatures of chitosan/2-glycerophosphate/nanosilver hydrogels. Carbohydr Polym 84:1337–1343

    Article  CAS  Google Scholar 

  24. Suresh V, Anbazhagan C, Thangam R, Senthilkumar D, Senthilkumar N, Kannan S et al (2013) Stabilization of mitochondrial and microsomal function of fucoidan from Sargassum plagiophyllum in diethylnitrosamine induced hepatocarcinogenesis. Carbohydr Polym 92:1377–1385

    Article  CAS  Google Scholar 

  25. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  26. Terho TT, Hartiala K (1971) Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem 41:471–476

    Article  CAS  Google Scholar 

  27. Bjornsson S (1993) Size-dependent separation of proteoglycans by electrophoresis in gels of pure agarose. Anal Biochem 210:292–298

    Article  CAS  Google Scholar 

  28. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF et al (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152

    Article  CAS  Google Scholar 

  29. Kuno T, Naito S, Ito H, Ohta M, Kido N, Kato N (1986) Staining of the O-specific polysaccharide chains of lipopolysaccharides with alkaline bismuth. Microbiol Immunol 30:1207–1211

    Article  CAS  Google Scholar 

  30. Tanoue T, Nishitani Y, Kanazawa K, Hashimoto T, Mizuno M (2008) In vitro model to estimate gut inflammation using co-cultured Caco-2 and RAW264.7 cells. Biochem Biophys Res Commun 374:565–569

    Article  CAS  Google Scholar 

  31. Ward PD, Tippin TK, Thakker DR (2000) Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 3:346–358

    Article  CAS  Google Scholar 

  32. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H (2000) Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 10:195–204

    Article  CAS  Google Scholar 

  33. Khan TA, Peh KK, Ch’ng HS (2002) Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharm Sci 5:205–212

    CAS  Google Scholar 

  34. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  Google Scholar 

  35. Ho YC, Mi FL, Sung HW, Kuo PL (2009) Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int J Pharm 376:69–75

    Article  CAS  Google Scholar 

  36. Ho YC, Wu SJ, Mi FL, Chiu YL, Yu SH, Panda N et al (2010) Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor. Bioconjug Chem 21:28–38

    Article  CAS  Google Scholar 

  37. Bandi N, Wei W, Roberts CB, Kotra LP, Kompella UB (2004) Preparation of budesonide- and indomethacin-hydroxypropyl-beta-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur J Pharm Sci 23:159–168

    Article  CAS  Google Scholar 

  38. Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31:9320–9332

    Article  CAS  Google Scholar 

  39. Sezer AD, Cevher E, Hatipoglu F, Ogurtan Z, Bas AL, Akbuga J (2008) Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull 31:2326–2333

    Article  CAS  Google Scholar 

  40. Qi LF, Xu ZR, Li Y, Jiang X, Han XY (2005) In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 11:5136–5141

    CAS  Google Scholar 

  41. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  42. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–1713

    Article  CAS  Google Scholar 

  43. Tang X, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21:191–200

    Article  CAS  Google Scholar 

  44. Abdelwahed W, Degobert G, Fessi H (2006) A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int J Pharm 309:178–188

    Article  CAS  Google Scholar 

  45. Crowe LM, Reid DS, Crowe JH (1996) Is trehalose special for preserving dry biomaterials? Biophys J 71:2087–2093

    Article  CAS  Google Scholar 

  46. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  47. Ford AW, Dawson PJ (1993) The effect of carbohydrate additives in the freeze-drying of alkaline phosphatase. J Pharm Pharmacol 45:86–93

    Article  CAS  Google Scholar 

  48. Smith J, Wood E, Dornish M (2004) Effect of chitosan on epithelial cell tight junctions. Pharm Res 21:43–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan for financially supporting this research under Contract No. NSC 102-2221-E-019-004 and NSC 101-2113-M-400-001-MY2. The authors are also grateful to the National Nanoscience and Nanotechnology Program for the Innovative Molecular Biomedical Nano-Imaging Open Facility, the National Health Research Institutes (NM-101-PP-11), and the Animal Molecular Imaging Core Facility at NHRI (NM-101-PP-04) for performing radio-labeling and gamma scintigraphy for 99mTc-CS/F NPs. We also thank Miss Su-Chin Huang, Chin-Ya Chen, and Nai-Chun Huang for analytical supports of gel electrophoresis and size exclusion chromatography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Cheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YC., Chen, JK., Lam, UI. et al. Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. J Polym Res 21, 415 (2014). https://doi.org/10.1007/s10965-014-0415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0415-6

Keywords

Navigation