Skip to main content
Log in

Synthesis of two novel acenaphthyl-quinoxaline based low-band gap polymers and its electrochromic properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two novel π-conjugated monomers, 8,11-bis(4-octyl-2-thienyl)-acenaphthyl-[1,2-b] quinoxaline (OTAQ) and 8,12-bis(4-octyl-2-thienyl)-acenaphthyl-[1,2,5]thiadiazolo[3,4,i]quinoxaline (OTATQ), were synthesized. These polymers contains on type electron donating unit 3-octylthiophene and two type of electron withdrawing unit that acenaphthyl-quinoxaline in OTAQ and acenaphthyl-thiadiazolo-quinoxaline in OTATQ, respectively. Electrochemical polymerization of the monomers were carried out in acetonitrile/dichloromethane soluvent mixture containing tetra-n-butylammonium hexafluorophosphate and electrochromic properties of polymers are described in this paper. Furthermore, the effects of structural difference on electrochemical redox behavior and spectroelectrochemical properties of the two resulting polymers were examined. The results showed that an anodic wave at +0.56 V vs Ag wire pseudo-reference electrode corresponding to the monomer OTAQ oxidation was observed, and an anodic wave at +0.91 V was observed in oxidation of OTATQ due to it contains stronger electron withdrawing unit in which contain thiadiazolo structure. The UV–vis-NIR spectra analysis revealed that the POTAQ film has two absorbance bands centered at 694 nm and longer than 1,600 nm and the POTATQ film has an absorbance at 1,014 nm, respectively. The band gaps of these polymers, defined as the onset of the absorption band at 694 nm for POTATQ and the absorption band at 1,014 nm for POTATQ, were determined as 1.06 eV for POTAQ and as 0.76 eV for POTATQ. The electrochromic results showed that the two polymer films revealed about 30 % optical contrast in the NIR region with low response time (5 s for POTAQ and 10 s for POTATQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rougier A, Sauvet K, Sauques L (2008) Electrochromic materials from the visible to the infrared region: an example WO3. Ionics 14:99–105

    Article  CAS  Google Scholar 

  2. Inamdar AI, Sonavane AC, Pawar SM, Kim Y, Kim JH, Patil PS, Jung W, Im H, Kim D-Y, Kim H (2011) Electrochromic and electrochemical properties of amorphous porous nickel hydroxide thin films. Appl Surf Sci 257:9606–9611

    Article  CAS  Google Scholar 

  3. Sorar I, Pehlivan E, Niklasson GA, Granqvist CG (2013) Electrochromism of DC magnetron sputtered TiO2 thin films: role of deposition parameters. Sol Energy Mater Sol Cells 115:172–180

    Article  CAS  Google Scholar 

  4. Liou G-S, Fang Y-K, Yen H-J (2007) Synthesis and properties of noncoplanar rigid-rod aromatic polyamides containing phenyl or naphthyl substituents. J Polym Res 14:147–155

    Article  CAS  Google Scholar 

  5. Hsiao S-H, Guo W, Kung Y-C, Lee Y-J (2010) Redox-active and electrochromic aromatic poly(amide-imide)s with 2,4-dimethoxytriphenylamine chromophores. J Polym Res 18:1353–1364

    Article  CAS  Google Scholar 

  6. Huang J-H, Tzuyu Huang A, Hsu C-Y, Lin J-T, Chu C-W (2012) Influence of molecular weight on silole-containing cyclopentadithiophene polymer and its impact on the electrochromic properties. Sol Energy Mater Sol Cells 98:300–307

    Article  CAS  Google Scholar 

  7. Bicil Z, Camurlu P, Yucel B, Becer B (2013) Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. J Polym Res 20:228–233

    Article  CAS  Google Scholar 

  8. Hsiao S-H, Wang H-M, Chang P-C, Kung Y-R, Lee T-M (2013) Novel organosoluble aromatic polyetheramides bearing triphenylamine moieties: synthesis, electrochemistry, and electrochromism. J Polym Res 20:154–163

    Article  CAS  Google Scholar 

  9. Żmija J, Małachowski MJ (2011) New organic electrochromic materials and theirs applications. J Achiev Mater Manuf Eng 48:14–23

    Google Scholar 

  10. Sahin E, Sahmetlioglu E, Akhmedov IM, Tanyeli C, Toppare L (2006) Synthesis and characterization of a new soluble conducting polymer and its electrochromic devices. Org Electron 7:351–362

    Article  CAS  Google Scholar 

  11. Chandrasekhar P, Zay BJ, McQueeney T, Birur GC, Sitaram V, Menon R, Coviello M, Elsenbaumer RL (2005) Physical, chemical, theoretical aspects of conducting polymer electrochromics in the visible, IR and microwave regions. Synth Met 155:623–627

    Article  CAS  Google Scholar 

  12. GMURALI M, DALIMBA U, YADAV V, SRIVASTAVA R, SAFAKATH K (2013) Thiophene-based donor–acceptor conjugated polymer as potential optoelectronic and photonicmaterial. J Chem Sci 125:247–257

    Article  CAS  Google Scholar 

  13. Shin SA, Park JB, Kim J-H, Hwang D-H (2013) Synthesis and characterization of 2,1,3-benzoselenadiazole-based conjugated polymers for organic photovoltaic cells. Synth Met 172:54–62

    Article  CAS  Google Scholar 

  14. Tamilavan V, Song M, Agneeswari R, Kang J-W, Hwang D-H, Hyun MH (2013) Synthesis and photovoltaic properties of donor–acceptor polymers incorporating a structurally-novel pyrrole-based imide-functionalized electron acceptor moiety. Polymer 54:6125–6132

    Article  CAS  Google Scholar 

  15. Wang T-L, Shieh Y-T, Yang C-H, Chen Y-Y, Ho T-H, Chen C-H (2013) A new low band gap donor–acceptor alternating copolymer containing dithienothiophene and fluorenone unit. J Polym Res 20:213–222

    Article  CAS  Google Scholar 

  16. Ozyurt F, Durmus A, Gorkem Gunbas E, Toppare L (2008) A low-band gap conductive copolymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline and 3,4-ethylenedioxythiophene. J Solid State Electrochem 14:279–283

    Article  CAS  Google Scholar 

  17. Celebi S, Baran D, Balan A, Toppare L (2010) Enhancing electrochromic and kinetic properties of poly(2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) by copolymerization. Electrochim Acta 55:2373–2376

    Article  CAS  Google Scholar 

  18. Pamuk M, Tirkeş S, Cihaner A, Algı F (2010) A new low-voltage-driven polymeric electrochromic. Polymer 51:62–68

    Article  CAS  Google Scholar 

  19. Tarkuc S, Unver EK, Udum YA, Toppare L (2010) Multi-colored electrochromic polymer with enhanced optical contrast. Eur Polym J 46:2199–2205

    Article  CAS  Google Scholar 

  20. Matsidik R, Mamtimin X, Mi HY, Nurulla I (2010) Synthesis and properties of polymer from bis-3,4-ethylenedioxythiophene substituted acenaphthenequinoxaline. J Appl Polym Sci 118:74–80

    Article  CAS  Google Scholar 

  21. Esmer EN, Tarkuc S, Udum YA, Toppare L (2011) Near infrared electrochromic polymers based on phenazine moieties. Mater Chem Phys 131:519–524

    Article  CAS  Google Scholar 

  22. Hellström S, Henriksson P, Kroon R, Wang E, Andersson MR (2011) Blue-to-transmissive electrochromic switching of solution processable donor–acceptor polymers. Org Electron 12:1406–1413

    Article  CAS  Google Scholar 

  23. Sendur M, Balan A, Baran D, Toppare L (2011) Syntheses and optoelectronic properties of quinoxaline polymers: the effect of donor unit. J Polym Sci A Polym Chem 49:4065–4070

    Article  CAS  Google Scholar 

  24. Ozdemir S, Sendur M, Oktem G, Doğan Ö, Toppare L (2012) A promising combination of benzotriazole and quinoxaline units: A new acceptor moiety toward synthesis of multipurpose donor–acceptor type polymers. J Mater Chem 22:4687–4694

    Article  CAS  Google Scholar 

  25. Carbas BB, Kivrak A, Zora M, Önal AM (2012) Synthesis and electropolymerization of a new ion sensitive ethylenedioxy-substituted terthiophene monomer bearing a quinoxaline moiety. J Electroanal Chem 677–680:9–14

    Article  CAS  Google Scholar 

  26. Kivrak A, Carbas BB, Zora M, Önal AM (2012) Synthesis and electropolymerization of an ion sensing and fluorescent fluorene derivative bearing a quinoxaline moiety and its analogues with different donor units. React Funct Polym 72:613–620

    Article  CAS  Google Scholar 

  27. Tarkuc S, Udum YA, Toppare L (2012) Tailoring the optoelectronic properties of donor–acceptor–donor type π-conjugated polymers via incorporating different electron-acceptor moieties. Thin Solid Films 520:2960–2965

    Article  CAS  Google Scholar 

  28. Wang E, Hou L, Wang Z, Hellström S, Mammo W, Zhang F, Inganäs O, Andersson MR (2010) Small band gap polymers synthesized via a modified nitration of 4,7-dibromo-2,1,3-benzothiadiazole. Org Lett 12:4470–4473

    Article  CAS  Google Scholar 

  29. Bundgaard E, Krebs FC (2006) Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole). Macromolecules 39:2823–2831

    Article  CAS  Google Scholar 

  30. Cai T, Zhou Y, Wang E, Hellström S, Zhang F, Xu S, Inganäs O, Andersson MR (2010) Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Sol Energy Mater Sol Cells 94:1275–1281

    Article  CAS  Google Scholar 

  31. Unver EK, Tarkuc S, Baran D, Tanyeli C, Toppare L (2011) Synthesis of new donor–acceptor polymers containing thiadiazoloquinoxaline and pyrazinoquinoxaline moieties:low-band gap, high optical contrast, and almost black colored materials. Tetrahedron Lett 52:2725–2729

    Article  CAS  Google Scholar 

  32. Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F (2011) High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc 133:20799–20807

    Article  CAS  Google Scholar 

  33. Baran D, Balan A, Celebi S, Meana Esteban B, Neugebauer H, Sariciftci NS, Toppare L (2010) Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications. Chem Mater 22:2978–2987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 20974092, 21164011) and Xinjiang University-Institute Joint Project (No. XY110112); we appreciate the support very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismayil Nurulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmut, M., Awut, T., Nurulla, I. et al. Synthesis of two novel acenaphthyl-quinoxaline based low-band gap polymers and its electrochromic properties. J Polym Res 21, 403 (2014). https://doi.org/10.1007/s10965-014-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0403-x

Keywords

Navigation