Skip to main content
Log in

Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the previous work, we reported that the β-selectivity, morphology and tensile behavior of isotactic polypropylene (iPP) can be efficiently tuned by the combination of controlling the melt structure status (namely, creation ordered structure by tuning the fusion temperature Tf) and the addition of β-nucleation agent (β-NA, tradename WBG-II, concentration 0.01 wt%), which was called “Ordered Structure Effect” (OSE). This study further investigates the dynamic crystallization and melting behavior of β-iPP with a different melt structure status by differential scanning calorimentry (DSC) and non-isothermal crystallization kinetics. The results revealed that under all the cooling rates studied (2, 5, 10, 20 and 40 °C/min), the crystallization temperature on the cooling curves increased gradually with the decrease of Tf; meanwhile, when the Tf was in the temperature range of 168–186 °C where the OSE occurs (defined as Region II), the crystallization activation energy ΔE was found to be evidently lower, compared with that when the Tf was higher than 186 °C or lower than 168 °C. The results of the subsequent heating showed that the occurrence of the OSE can be observed at all the cooling rates studied; the location of the Region II was constant when the cooling rate varied. Low cooling rate encouraged the formation of more β-phase triggered by OSE. Moreover, the role of OSE on the β-α recrystallization was comparatively studied by tuning the end temperature of recooling (Tend) after held at Tf, and it was found that the OSE encouraged the formation of β-phase with high thermal stability at the low temperature part of Region II, while enhancing the β-crystal with relatively low thermal stability at the high temperature part of Region II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26(3):443–533

    Article  CAS  Google Scholar 

  2. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    Article  CAS  Google Scholar 

  3. Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19(12):1–11

    Article  CAS  Google Scholar 

  4. De Rosa C, Auriemma F (2006) Structural−mechanical phase diagram of isotactic polypropylene. J Am Chem Soc 128(34):11024–11025

    Article  CAS  Google Scholar 

  5. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  6. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130(1):25–38

    Article  CAS  Google Scholar 

  7. Du M, Guo B, Wan J, Zou Q, Jia D (2010) Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17(1):109–118

    Article  CAS  Google Scholar 

  8. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cim 15(1):40–51

    Article  CAS  Google Scholar 

  9. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci 129(5):2663–2670

    Article  CAS  Google Scholar 

  10. Kang J, Wang B, Peng H, Chen J, Cao Y, Li H, Yang F, Xiang M (2013) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull. doi:10.1007/s00289-013-1077-y

    Google Scholar 

  11. Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes? Eur Phys J E 3(2):185–194

    Article  CAS  Google Scholar 

  12. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39(25):6331–6337

    Article  CAS  Google Scholar 

  13. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J, Cao Y, Li H, Yang F, Xiang M (2013) Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents —effects of thermal conditions. J Appl Polym Sci. doi:10.1002/app.40115

    Google Scholar 

  14. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2013) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci. doi:10.1002/app.40027

    Google Scholar 

  15. Bruckner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Commu 18(1):1–7

    Article  Google Scholar 

  16. Bruckner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16(2–3):361–404

    Article  CAS  Google Scholar 

  17. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  18. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41(4):1121–1171

    Article  CAS  Google Scholar 

  19. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li H, Yang F, Xiang M (2013) Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution—the role of dual-selective β-nucleation agent. Polym Adv Technol. doi:10.1002/pat.3210

    Google Scholar 

  20. Li J, Wang SW, Zhan KJ, Yang W, Xie BH, Yang MB (2012) Effect of carbon nanotube-supported β nucleating agent on the thermal properties, morphology, and mechanical properties of polyamide 6/isotactic polypropylene blends. J Appl Polym Sci 124(2):993–999

    Article  CAS  Google Scholar 

  21. Libster D, Aserin A, Garti N (2007) Advanced nucleating agents for polypropylene. Polym Adv Technol 18(9):685–695

    Article  CAS  Google Scholar 

  22. Ni Q, Zhu X, Wang Y, Liu Z (2011) Microstructure and properties of polypropylene/glass fiber composites grafted with poly(pentaerythritol triacrylate). J Polym Res 18(5):917–926

    Article  CAS  Google Scholar 

  23. Na B, Li Z, Lv R, Tian N, Zou S (2011) Oriented re-crystallization of polypropylene through partial melting and its dramatic influence on mechanical properties. J Polym Res 18(6):2103–2108

    Article  CAS  Google Scholar 

  24. Lu Q, Dou Q (2009) β-Crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560

    Article  CAS  Google Scholar 

  25. Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279(10):939–946

    Article  CAS  Google Scholar 

  26. Li H, Yan S (2011) Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 44(3):417–428

    Article  CAS  Google Scholar 

  27. Li H, Sun X, Yan S, Schultz JM (2008) Initial stage of iPP β to α growth transition induced by stepwise crystallization. Macromolecules 41(13):5062–5064

    Article  CAS  Google Scholar 

  28. Li H, Jiang S, Wang J, Wang D, Yan S (2003) Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules 36(8):2802–2807

    Article  CAS  Google Scholar 

  29. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800

    Article  CAS  Google Scholar 

  30. Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B: Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  31. Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17(4):878–885

    Article  CAS  Google Scholar 

  32. Lorenzo AT, Muller AJ (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B: Polym Phys 46(14):1478–1487

    Article  CAS  Google Scholar 

  33. Lorenzo AT, Arnal ML, Sánchez JJ, Muller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B: Polym Phys 44(12):1738–1750

    Article  CAS  Google Scholar 

  34. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  CAS  Google Scholar 

  35. Feng Y, Jin X (1999) Effect of self-nucleation on crystallization and melting behavior of polypropylene and its copolymers. J Appl Polym Sci 72:1559–1564

    Article  CAS  Google Scholar 

  36. Fillon B, Thierry A, Wittmann J, Lotz B (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci Part B: Polym Phys 31(10):1407–1424

    Article  CAS  Google Scholar 

  37. Fillon B, Lotz B, Thierry A, Wittmann J (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B: Polym Phys 31(10):1395–1405

    Article  CAS  Google Scholar 

  38. Zhao S, Xin Z (2010) Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B: Polym Phys 48(6):653–665

    Article  CAS  Google Scholar 

  39. Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L (2013) Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules 46(18):7399–7405

    Article  CAS  Google Scholar 

  40. Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso GC (2013) Self-nucleation of isotactic poly(1-butene) in the trigonal modification. Polymer. doi:10.1016/j.polymer.2013.11.030

    Google Scholar 

  41. Cavallo D, Azzurri F, Balzano L, Funari SRS, Alfonso GC (2010) Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules 43(22):9394–9400

    Article  CAS  Google Scholar 

  42. Azzurri F, Alfonso GC (2008) Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41:1377–1383

    Article  CAS  Google Scholar 

  43. Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728

    Article  CAS  Google Scholar 

  44. Kang J, Peng HM, Zhou T, Chen JY, Cao Y, Yang F, Xiang M Understanding in the influence of melt structure on the polymorphic behavior of polymer: β-nucleated isotactic polypropylene as an example. In Submission

  45. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20(2):1–11

    Article  CAS  Google Scholar 

  46. Strobl G, Cho TY (2007) Growth kinetics of polymer crystals in bulk. Eur Phys J E Soft Matter 23(1):55–65

    Article  CAS  Google Scholar 

  47. Gulrez SH, Mohsin MEA, Al-Zahrani SM (2013) Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. J Polym Res 20(10):1–9

    Article  CAS  Google Scholar 

  48. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19(10):1–7

    Article  CAS  Google Scholar 

  49. Durmus A, Yalçınyuva T (2009) Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 16(5):489–498

    Article  CAS  Google Scholar 

  50. Shi YH, Dou Q (2012) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112(2):901–911

    Article  CAS  Google Scholar 

  51. Jeon K, Palza H, Quijada R, Alamo RG (2009) Effect of comonomer type on the crystallization kinetics and crystalline structure of random isotactic propylene 1-alkene copolymers. Polymer 50(3):832–844

    Article  CAS  Google Scholar 

  52. La Carrubba V, Piccarolo S, Brucato V (2007) Crystallization kinetics of iPP: Influence of operating conditions and molecular parameters. J Appl Polym Sci 104(2):1358–1367

    Article  CAS  Google Scholar 

  53. Xiao W, Wu P, Feng J, Yao R (2009) Influence of a novel β-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J Appl Polym Sci 111(2):1076–1085

    Article  CAS  Google Scholar 

  54. Wei Z, Zhang W, Chen G, Liang J, Yang S, Wang P, Liu L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783

    Article  CAS  Google Scholar 

  55. Ariffin A, Ariff ZM, Jikan SS (2010) Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim 103(1):171–177

    Article  CAS  Google Scholar 

  56. Hao W, Li W, Yang W, Shen L (2011) Effect of silicon nitride nanoparticles on the crystallization behavior of polypropylene. Polym Test 30(5):527–533

    Article  CAS  Google Scholar 

  57. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750

    Article  CAS  Google Scholar 

  58. Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N, N’-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431

    Article  CAS  Google Scholar 

  59. Horvath Z, Sajo I, Stoll K, Menyhard A, Varga J (2010) The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. eXPRESS Polym Lett 2:101–114

    Google Scholar 

  60. Pasquini N, Addeo A (2005) Polypropylene Handbook, 2nd Edition, Hanser Gardner Publications, USA

  61. Cai Z, Li J, Shang Y, Huo H, Feng J, Funari S, Jiang S (2013) Temperature-dependent selective crystallization behavior of isotactic polypropylene with a β-nucleating agent. J Appl Polym Sci 128:628–635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Jinyao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Chen, Z., Zhou, T. et al. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21, 384 (2014). https://doi.org/10.1007/s10965-014-0384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0384-9

Keywords

Navigation