Skip to main content
Log in

Polysiloxane-based core-shell microspheres for toughening of epoxy resins

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We present a simple procedure for preparation of core shell poly(dimethylsiloxane)–epoxy microspheres (CPR) by suspension polymerisation route and demonstrate its potential as effective toughener for thermosetting epoxy resin. The curing of siloxane macromonomer was performed in the presence of platinum based hydrosilylation catalyst and the effect of reaction parameters on the dimensions of the polydimethylesiloxane (PDMS) based elastomeric microspheres was quantified, which could be varied from 90 to 216 μ. CPR were prepared by coating the PDMS core with epoxy resin in an additional step. Composites containing varying amounts of microspheres (3–10 % w/w) were prepared and the effect of their incorporation on quasi-static as well as dynamic properties of epoxy resin was evaluated. The glass transition temperature of the unmodified epoxy was unaltered on blending with elastomeric microspheres, which indicated its existence in a well separated phase. The presence of an epoxy coating on the silicone core led to improved dispersion in the epoxy matrix, which was evident from higher impact strength and fracture energies(GIC) as compared to its uncoated analogues. The charpy impact strength and GIC increased by 148 % and 70 % respectively on introduction of 5 % CPR. This was however accompanied with a reduction in the tensile modulus and strength of the base epoxy. Excellent agreement was found between the experimentally measured modulae and the predictions made on the basis of Halpin Tsai and Lewis-Neilson models. Post-mortem morphological studies of the fracture surfaces revealed the presence of spherical cavities which substantiate the role of rubber cavitation as the primary toughening mechanism in microsphere toughened epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barlow JW, Paul DR (1981) Polym Eng Sci 21(15):985–996

    Article  CAS  Google Scholar 

  2. Kavitha, Revathi A, Rao S, Srihari S, Dayananda GN (2012) J Polym Res 19 (6):1–7

  3. Mirmohseni A, Zavareh S (2010) J Polym Res 17(2):191–201

    Article  CAS  Google Scholar 

  4. Rostamiyan Y, Fereidoon AB, Hamed Mashhadzadeh A, Khalili MA (2013) J Polym Res 20(6):1–11

    Article  CAS  Google Scholar 

  5. Chaudhary S, Parthasarathy S, Kumar D, Rajagopal C, Roy PK (2013) J AppPolym Sci. doi:10.1002/app.39941

    Google Scholar 

  6. Roy PK, Ullas AV, Chaudhary S, Mangla V, Sharma P, Kumar D, Rajagopal C (2013) IranPolym Jl 22(9):709–719

    CAS  Google Scholar 

  7. Hodgkin JH, Simon GP, Varley RJ (1998) Polym Adv Tech 9(1):3–10

    Article  CAS  Google Scholar 

  8. Asif A, Rao VL, Ninan KN (2011) Polym Adv Tech 22(4):437–447

    Article  CAS  Google Scholar 

  9. Bhattacharyya AR, Ghosh AK, Misra A, Eichhorn KJ (2005) Polymer 46(5):1661–1674

    Article  CAS  Google Scholar 

  10. Barlow JW, Paul DR (1984) Polym Eng Sci 24(8):525–534

    Article  CAS  Google Scholar 

  11. Ratna D, Banthia A (2004) Macromol Res 12(1):11–21

    Article  CAS  Google Scholar 

  12. Hayes BS, Seferis JC (2001) Polym Comp 22(4):451–467

    Article  CAS  Google Scholar 

  13. Levita G, Marchetti A, Lazzeri A (1991) Makromol Chem Macromol Symp 41(1):179–194

    Article  CAS  Google Scholar 

  14. Pearson RA, Yee AF (1991) J Mater Sci 26(14):3828–3844

    Article  CAS  Google Scholar 

  15. Kunz-Douglass S, Beaumont PWR, Ashby MF (1980) J Mater Sci 15(5):1109–1123

    Article  CAS  Google Scholar 

  16. Dompas D, Groeninckx G (1994) Polymer 35(22):4743–4749

    Article  CAS  Google Scholar 

  17. Lovell PA (1995) Macromol Symp 92(1):71–81

    Article  CAS  Google Scholar 

  18. Bécu L, Sautereau H, Maazouz A, Gérard JF, Pabon M, Pichot C (1995) Polym Adv Tech 6(5):316–325

    Article  Google Scholar 

  19. Maazouz A, Sautereau H, Gérard JF (1994) Polym Bull 33(1):67–74

    Article  CAS  Google Scholar 

  20. Hsieh TH, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) J Mater Sci 45(5):1193–1210

    Article  CAS  Google Scholar 

  21. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48(2):530–541

    Article  CAS  Google Scholar 

  22. Murias P, Maciejewski H, Galina H (2012) Eur Polym J 48(4):769–773

    Article  CAS  Google Scholar 

  23. Lin M, Chu F, Guyot A, Putaux J-L, Bourgeat-Lami E (2005) Polymer 46(4):1331–1337

    Article  CAS  Google Scholar 

  24. Lin K-F, Shieh Y-D (1998) J AppPolym Sci 69(10):2069–2078

    Article  CAS  Google Scholar 

  25. Knott JF (1976) Fundamentals of fracture mechanics. Butterworths, London

    Google Scholar 

  26. Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London

    Book  Google Scholar 

  27. Lewis LN, Stein J, Gao Y, Colborn RE, Hutchins G (1997) Platin Met Rev 41(2):66–75

    CAS  Google Scholar 

  28. Hanoosh WS, Abdelrazaq EM (2009) Malay Polym J 4(2):52–61

    Google Scholar 

  29. Ramírez C, Rico M, Torres A, Barral L, López J, Montero B (2008) Eur Polym J 44(10):3035–3045

    Article  Google Scholar 

  30. Lu S-Y, Chiu C-P, Huang H-Y (2000) J Membr Sci 176(2):159–167

    Article  CAS  Google Scholar 

  31. Jain P, Choudhary V, Varma IK (2003) Eur Polym J 39(1):181–187

    Article  CAS  Google Scholar 

  32. Chen J-S, Ober CK, Poliks MD, Zhang Y, Wiesner U, Cohen C (2004) Polymer 45(6):1939–1950

    Article  CAS  Google Scholar 

  33. Russell B, Chartoff R (2005) Polymer 46(3):785–798

    Article  CAS  Google Scholar 

  34. Voo R, Mariatti M, Sim LC (2012) Compos Part B 43(8):3037–3043

    Article  CAS  Google Scholar 

  35. Giannakopoulos G, Masania K, Taylor AC (2011) J Mater Sci 46(2):327–338

    Article  CAS  Google Scholar 

  36. Affdl JCH, Kardos JL (1976) Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  37. Chen J, Kinloch AJ, Sprenger S, Taylor AC (2013) Polymer 54(16):4276–4289

    Article  CAS  Google Scholar 

  38. McGee S, McGullough RL (1981) Polym Comp 2(4):149–161

    Article  CAS  Google Scholar 

  39. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Boca Raton

  40. Pucciariello R, Villani V, Bianchi N, Braglia R (1991) Die Angewandte Makromolekulare Chemie 187(1):75–86

    Article  CAS  Google Scholar 

  41. Bagheri R, Pearson RA (1996) Polymer 37(20):4529–4538

    Article  CAS  Google Scholar 

  42. Bagheri R, Pearson RA (2000) Polymer 41(1):269–276

    Article  CAS  Google Scholar 

  43. Chen T, Jan Y (1991) J Mater Sci 26(21):5848–5858

    Article  CAS  Google Scholar 

  44. Pearson RA, Yee AF (1993) Polymer 34(17):3658–3670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Kumar Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P.K., Iqbal, N., Kumar, D. et al. Polysiloxane-based core-shell microspheres for toughening of epoxy resins. J Polym Res 21, 348 (2014). https://doi.org/10.1007/s10965-013-0348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0348-5

Keywords

Navigation