Skip to main content
Log in

Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Carbon fiber reinforced thermoplastics provide light weight materials with high mechanical, electrical and thermal properties required for aircraft, automobile and fuel cell and other high-end applications. In this study, short carbon fibers (SCF) of varying length were incorporated into polypropylene (PP) matrix to obtain short carbon fiber reinforced polypropylene (SCF/PP) composites by melt blending and injection molding techniques. The thermo-mechanical properties of SCF/PP composites were studied to investigate the effect of fiber length on their functionality. The crystallization behavior and the microstructure of SCF/PP were studied using several techniques such as differential scanning calorimeter (DSC), rheology and scanning electron microscopy (SEM). The thermo-mechanical stability of SCF/PP composites was shown to be improved with increase in fiber length. The isothermal crystallization kinetics of neat PP and SCF/PP composites were studied using Avrami equation. The results suggested the formation of two-dimensional growth of crystallites from instantaneous nucleation for neat PP as well as SCF/PP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szentes A, Horvath G, Varga CS (2010) Mechanical properties of polypropylene/multi walled carbon nanotube composites. Hung J Ind Chem 38:67–70

    CAS  Google Scholar 

  2. Guan Y, Wang S, Zheng A, Xiao H (2003) Crystallization behaviors of polypropylene and functional polypropylene. J Appl Polym Sci 88:872–877

    Article  CAS  Google Scholar 

  3. Hornsby PR (1999) Rheology, compounding and processing of filled thermoplastics. Adv Polym Sci 139:155–217

    Article  CAS  Google Scholar 

  4. Seo Y, Kim J, Kim KU, Kim YC (2000) Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer 41:2639–2646

    Article  CAS  Google Scholar 

  5. Rezaei F, Yunus R, Ibrahim NA, Mahdi ES (2008) Development of short-carbon-fiber reinforced polypropylene composite for car bonnet. Polym Plast Technol Eng 47:351–357

    Article  CAS  Google Scholar 

  6. Seo M-K, Lee J-R, Park S-J (2005) Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Mater Sci Eng, A 404:79–84

    Article  Google Scholar 

  7. Fu SY, Lauke B, Maeder E, Hu X, Yue CY (2000) Tensile properties of short-glass-fiber and short-carbon-fiber-reinforced polypropylene composites. Compos Part A 31:1117–1125

    Article  Google Scholar 

  8. Donnet JB, Bansal RC (1984) Carbon fibers. In: Mallick PK (ed) Fiber reinforced composite. Marcel Dekker, Inc, New York, pp 29–32

    Google Scholar 

  9. Rezaei F, Yunus R, Ibrahim NA (2009) Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 30:260–263

    Article  CAS  Google Scholar 

  10. Donnet JB, Wang TK, Rebouillat S, Peng JCM (eds) (1998) Carbon fibers, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  11. Chao S-C, Chen M, Chung C-T (1998) Isothermal crystallization and melting behavior of short carbon fiber reinforced poly(ether ether ketone) composites. J Polym Res 5(4):221–226

    Article  CAS  Google Scholar 

  12. Li Y, Wang S, Zhang Y, Zhang Y (2006) Crystallization behavior of carbon black-filled polypropylene and polypropylene/epoxy composites. J Appl Polym Sci 102:104–118

    Article  CAS  Google Scholar 

  13. Supaphol P, Spruiell JE (2000) Application of the Avrami, Tobin, Malkin, and simultaneous Avrami macrokinetic models to isothermal crystallization of syndiotactic polypropylenes. J Macromol Sci Phys B 39:257–277

    Article  Google Scholar 

  14. Li Y, Wang S, Zhang Y, Zhang Y (2006) Electrical properties and crystallisation behaviour of polypropylene/carbon black composites. Polym Polym Compos 14(4):377–390

    Google Scholar 

  15. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  16. Avrami M (1940) Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212

    Article  CAS  Google Scholar 

  17. Avrami M (1941) Kinetics of phase change. III: granulation, phase change and microstructure. J Chem Phys 9:117

    Article  Google Scholar 

  18. Fu S-Y, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56:1179–1190

    Article  CAS  Google Scholar 

  19. Karsli NG, Aytac A, Deniz V (2012) Effects of initial fiber length and fiber length distribution on the properties of carbon-fiber-reinforced-polypropylene composites. J Reinf Plast Compos 31(15):1053–1060

    Article  CAS  Google Scholar 

  20. Adhikari A, Lozano K (2011) Effects of carbon nanofibers on the crystallization kinetics of polyethylene oxide. J Polym Res 18:875–880

    Article  CAS  Google Scholar 

  21. Frounchi M, Dourbash A (2009) Oxygen barrier properties of poly(ethylene terephthalate) nanocomposite films. Macromol Mater Eng 294(1):68–74

    Article  CAS  Google Scholar 

  22. Wang L, Wang X, Zhu W, Chen Z, Pan J, Xu K (2010) Effect of nucleation agents on the crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB). J Appl Polym Sci 116:1116–1123

    Article  CAS  Google Scholar 

  23. Gupta AK, Rana SK, Deopura BL (1994) Crystallization kinetics of high-density polyethylene/linear low-density polyethylene blend. J Appl Polym Sci 51:231–239

    Article  CAS  Google Scholar 

  24. Harnisch K, Muschik H (1983) Determination of the Avrami exponent of partially crystallized polymers by DSC- (DTA-) analyses. Colloid Polym Sci 261:908–913

    Article  CAS  Google Scholar 

  25. Baranov VG, Gasparyan KA, Zurabyan RS, Edilyan ES, Frenkel SY (1969) Some aspects of orientational supermolecular order formed by stretching spherulitic films of high-pressure polyethylene. Polym Sci USSR 11(6):1417–1429

    Article  Google Scholar 

  26. Mucha M, Marszalek J, Fidrych A (2000) Crystallization of isotactic polypropylene containing carbon black as a filler. Polymer 41:4137–4142

    Article  CAS  Google Scholar 

  27. Ceccia S, Ferri D, Tabuani D, Maffettone PL (2008) Rheology of carbon nanofiber-reinforced polypropylene. Rheol Acta 47:425–433

    Article  CAS  Google Scholar 

  28. Green WJ (1995) Steady state and dynamic properties of concentrated fiberfilled thermoplastics. Polym Eng Sci 35:1670–1681

    Article  Google Scholar 

  29. Lozano K, Yang S, Zeng Q (2004) Rheological analysis of vaporgrown carbon nanofiber-reinforced polyethylene composites. J Appl Polym Sci 93:155–162

    Article  CAS  Google Scholar 

  30. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62:1105–1112

    Article  CAS  Google Scholar 

  31. Kanbur Y, Kucukyavuz Z (2008) Electrical and Mechanical Properties of Polypropylene/Carbon Black Composites. J Reinf Plast Compos. doi:10.1177/0731684408092378:1-10

    Google Scholar 

  32. Tjong SC, Xu Y, Meng YZ (1999) Composites based on maleated polypropylene and methyl cellulosic fiber: mechanical and thermal properties. J Appl Polym Sci 72:1647–1653

    Article  CAS  Google Scholar 

  33. Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37(2):476–483

    Article  CAS  Google Scholar 

  34. Lezak E, Kulinski Z, Masirek R, Piorkowska E, Pracella M, Gadzinowska K (2008) Mechanical and thermal properties of green polylactide composites with natural fillers. Macromol Biosci 8:1190–1200

    Article  CAS  Google Scholar 

  35. Farshidfar A, Haddadi V, Nazokdast H (2006) Electrical and Mechanical Properties Of Conducive Carbon Black/Polyolefin Composites Mixed With Carbon Fiber. Paper presented at the Composites 2006 Convention and Trade Show, St. Louis, MO USA, October 18–20, 2006

  36. Zamani MM, Fereidoon A, Sabet A (2012) Multi-walled carbon nanotube-filled polypropylene nanocomposites: high velocity impact response and mechanical properties. Iran Polym J 21(12):887–894

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank TASNEE¸ Saudi Arabia for providing polypropylene, and to Mr. Khaja Nayeemuddin for the assistance during preparation of composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed K. H. Gulrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulrez, S.K.H., Mohsin, M.E.A. & Al-Zahrani, S.M. Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. J Polym Res 20, 265 (2013). https://doi.org/10.1007/s10965-013-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0265-7

Keyword

Navigation