Skip to main content
Log in

Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection molding

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The advances of the polymer melt flow-induced crystallization behaviour and its influence on mechanical properties of high density polyethylene (HDPE) in micron injection (MI) were studied in the present paper. Analysis of mechanical performance, including yield stress and elongation at break, for samples adopted from different regions in a molded plaque showed that a higher injection speed, a higher mold temperature and a longer cooling time could effectively enhance the yield stress but negatively promoted the ductility. Then, the mechanisms of such variation of mechanical performance and the factors affecting it were investigated by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized light microscopy (PLM). The super high shear rate during cavity feeding in MI molding not only induced a typical three-layered structure but also developed a highly oriented fibrously morphological structure in the skin layer. However, such fully oriented morphology was much negative in the interlayer and even could not be observed in the core layer. The results from SEM and PLM observations indicated that the orientation morphology varied significantly through the plaque’s cross-section and thickness of the each layer changed with the process parameters and geometric position, and finally led to variation of the mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sandeman I, Keller A (1956) J Polym Sci Part A: Polym Chem 19:401–406

    CAS  Google Scholar 

  2. Hyndman D, Origlio GE (1959) J Polym Sci Part A: Polym Chem 39:556–561

    CAS  Google Scholar 

  3. Prevorsek DC (1971) J Polym Sci Part C: Polym Symp 32:343–375

    Article  Google Scholar 

  4. Prevorsek DC, Harget PJ, Sharma RK (1973) J Macromol Sci Phys B8:127–156

    Article  Google Scholar 

  5. Flory PJ, Yoon DY, Dill KA (1984) Macromolecule 17:862–868

    Article  CAS  Google Scholar 

  6. Yoon DY, Flory PJ (1984) Macromolecule 17:868–876

    Article  CAS  Google Scholar 

  7. Kantz MR, Newman HD Jr, Stigale FH (1972) J Appl Polym Sci 16:1249–1260

    Article  CAS  Google Scholar 

  8. Fictchmun DR, Mencik Z (1973) J Polym Sci Part B: Polym Phys 11:951–971

    Article  Google Scholar 

  9. Ren MQ, Zhang ZY, Wu SZ, Wei J, Xiao CF (2006) J Polym Res 13:9–15

    Article  CAS  Google Scholar 

  10. Wen HY, Hua Li XSY, Xiao SL, Li HF, Jiang SC, An LJ, Wu ZH (2012) J Polym Res 19:9801–9812

    Article  Google Scholar 

  11. Zhang CG, Hu HQ, Wang XH, Yao YH, Dong X, Wang DJ, Wang ZG, Han CC (2007) Polym 48:1105–1115

    Article  CAS  Google Scholar 

  12. Murase H, Ohta Y, Hashimoto T (2009) Polym 50:4727–4736

    Article  CAS  Google Scholar 

  13. Zhu PW, Phillips AW, Edward G, Zheng R (2012) Polym 53:2274–2282

    Article  CAS  Google Scholar 

  14. Sun TC, Chen FH, Dong X, Zhou Y, Wang DJ, Han CC (2009) Polym 50:2465–2471

    Article  CAS  Google Scholar 

  15. Tanner RI, Qi FZ (2009) Chem Eng Sci 64:4576–4579

    Article  CAS  Google Scholar 

  16. Janeschitz-Kriegl H, Ratajski E (2005) Polym 46:3856–3870

    Article  CAS  Google Scholar 

  17. Lellinger D, Floudas G, Alig I (2003) Polym 44:5759–5769

    Article  CAS  Google Scholar 

  18. Boutaous M, Bourgin P, Zinet M (2010) J Non-Newtonian Fluid Mech 165:227–237

    Article  CAS  Google Scholar 

  19. van Drongelen M, van Erp TB, Peters GWM (2012) Polym 53:4758–4769

    Article  Google Scholar 

  20. Liang JZ (2001) Polym Test 20:469–473

    Article  CAS  Google Scholar 

  21. Gao J, Zhang Q, Wang K, Fu Q, Chen Y, Chen HY, Huang H, Rego JM (2012) Compos Part A 43:562–569

    Article  CAS  Google Scholar 

  22. Mu Y, Zhao GQ, Chen AB, Wu XH (2012) Comput Chem Eng 46:190–204

    Article  CAS  Google Scholar 

  23. van Erp TB, Balzano L, Spoelstra, Govaert, Peters GWM (2012) Polym 53:5896–5908

    Article  Google Scholar 

  24. Su R, Wang K, Zhao P, Zhang Q, Du RN, Fu Q, Li LB, Li L (2007) Polym 48:4529–4536

    Article  CAS  Google Scholar 

  25. Fujiyama M, Awaya H, Kimura S (1977) J Appl Polym Sci 21:3291–3309

    Article  CAS  Google Scholar 

  26. Yang Q, Chen YH, Whiteside BR, Coates PD (2011) Polymer Process Engineering 11: enhanced polymer processing, 1st edn. University of Bradford, UK, pp 361–379

    Google Scholar 

  27. Giboz J, Copponnex T, Mélé P (2009) J Micromech Microeng 19(2):1–12

    Article  Google Scholar 

  28. Whiteside BR, Martyn MT, Coates PD, Allan PS, Hornsby PR, Greenway GR (2004) Plast Rubber Compos 33:11–7

    Article  CAS  Google Scholar 

  29. Zhou QX, Liu FH, Guo C, Fu Q, Shen KZ, Zhang J (2011) Polym 13:2970–2978

    Article  Google Scholar 

  30. Čermák R, Obadal M, Ponížil P, Polášková M, Stoklasa K, Lengálová A (2005) Eur Polym J 41:1838–1845

    Article  Google Scholar 

  31. Le MC, Belhabib S, Nicolazo C, Vachot P, Mousseau P, Sarda A, Deterre R (2011) J Mater Process Tech 211:1757–1763

    Article  CAS  Google Scholar 

  32. Čermák R, Obadal M, Ponížil P, Polášková M, Stoklasa K, Hečková J (2006) Eur Polym J 62:2185–2191

    Google Scholar 

  33. Amornsakchai T, Songtipya P (2002) Polym 43:4231–4236

    Article  CAS  Google Scholar 

  34. Machiels A, Denys K, Van D, Posthuma B (1996) Polym Eng Sci 36:2451–2466

    Article  CAS  Google Scholar 

  35. Su R, Su JX, Wang K, Yang CY, Zhang Q, Fu Q (2009) Eur Polym J 45:747–756

    Article  CAS  Google Scholar 

  36. Viana JC (2004) Polym 45:993–1005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Caton-Rose, F., Ren, D. et al. Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection molding. J Polym Res 20, 122 (2013). https://doi.org/10.1007/s10965-013-0122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0122-8

Keywords

Navigation