Skip to main content
Log in

Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Large amount of work has be published on the dynamic crystallization and melting behavior of β-nucleated polypropylene (β-PP). However, the relationship between molecular structure and dynamic crystallization behavior of β-PP is still not clear. In this study, the dynamic crystallization and melting behavior of two β-nucleated isotactic polypropylene (β-iPP) with nearly same average isotacticity but different stereo-defect distribution, were studied by differential scanning calorimetry (DSC), wide angel X-ray diffraction (WAXD) and temperature modulated DSC (TMDSC). The results indicated that stereo-defect distribution of iPP can significantly influence the dependence of the β-crystal content and thermal stability on the cooling rate. NPP-A with less uniform stereo-defect distribution favors the crystallization at higher temperature region and the formation of β-crystal with high thermal stability in all cooling rates concerned, moreover, the β-crystal content is influenced by cooling rate; for NPP-B with more uniform distribution of stereo-defect, the crystallization temperature and the regular insertion of molecular chains can be reduced in a larger extent. NPP-B is more suitable for the formation of high proportion of β-crystal in both low and high cooling rates, meanwhile, the thermal stability of crystal is sensitive to the cooling rate. This work provides a new insight into the design of β-iPP in dynamic crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haque M, Islam S, Islam N (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res. doi:10.1007/s10965-012-9847-z

  2. Zhu L, Xu X, Sheng J (2011) The effect of stretching on the morphological structures and mechanical properties of polypropylene and poly(ethylene-co-octene) blends. J Polym Res 18(6):2469–2475

    Article  CAS  Google Scholar 

  3. Kang J, Cao Y, Li HL, Li JP, Chen SH, Yang F, Xiang M (2012) J Polym Res. doi:10.1007/s10965-012-0037-9

  4. Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E (2007) Competition between α, β, and γ Polymorphs in a β-Nucleated Metallocenic Isotactic Polypropylene. Macromolecules 40(19):6871–6878

    Article  CAS  Google Scholar 

  5. Varga J (2002) β-Modification of Isotactic Polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Polym Phys 41(4):1121–1171

    Article  Google Scholar 

  6. Lorenzo AT, Arnal ML, Muller AJ, Lin MC, Chen HL (2011) SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys 212(18):2009–2016

    Article  CAS  Google Scholar 

  7. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  8. Lorenzo AT, Muller AJ (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B: Polym Phys 46(14):1478–1487

    Article  CAS  Google Scholar 

  9. Lorenzo AT, Arnal ML, Sanchez JJ, Muller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B: Polym Phys 44(12):1738–1750

    Article  CAS  Google Scholar 

  10. Kang J, Chen JY, Cao Y, Li HL (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  11. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res. doi:10.1007/s10965-012-9975-5

  12. Dimeska A, Phillips PJ (2006) High pressure crystallization of random propylene–ethylene copolymers: α–γ Phase diagram. Polymer 47(15):5445–5456

    Article  CAS  Google Scholar 

  13. Chen JY, Cao Y, Li HL (2010) The effect of propylene–ethylene copolymers with different comonomer content on melting and crystallization behavior of polypropylene. J Appl Polym Sci 116(2):1172–1183

    CAS  Google Scholar 

  14. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53(2):277–282

    Article  CAS  Google Scholar 

  15. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51(21):4639–4662

    Article  CAS  Google Scholar 

  16. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  17. Shangguan Y, Song Y, Peng M, Li B, Zheng Q (2005) Formation of β-crystal from nonisothermal crystallization of compression-molded isotactic polypropylene melt. Eur Polym J 41(8):1766–1771

    Article  CAS  Google Scholar 

  18. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800

    Article  CAS  Google Scholar 

  19. Bai H, Luo F, Zhou T, Deng H, Wang K, Fu Q (2011) New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer 52(10):2351–2360

    Article  CAS  Google Scholar 

  20. Wang YR, Ni QL, Liu ZH, Zou JD, Zhu XS (2011) Grafting modification and properties of polypropylene with pentaerythritol tetra-acrylate. J Polym Res 18(6):2185–2193

    Article  CAS  Google Scholar 

  21. Lu QL, Dou Q (2009) β-crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560

    Article  CAS  Google Scholar 

  22. Cheng S, Wen DJ, Wu GQ (2009) Preparation and characterization of fluorinated polypropylene by reactive extrusion with fluorinated acrylate. J Polym Res 16(3):271–278

    Article  CAS  Google Scholar 

  23. Cho K, Nabi Saheb D, Yang H, Kang BI, Kim J, Lee SS (2003) Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer 44(14):4053–4059

    Article  CAS  Google Scholar 

  24. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-Crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750

    Article  CAS  Google Scholar 

  25. Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N,N’-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431

    Article  CAS  Google Scholar 

  26. Zhang RH, Shi DA, Tsui CP, Tang CY, Tjong SC, Li RKY (2011) The formation of β-polypropylene crystals in a compatibilized blend of isotactic polypropylene and polyamide-6. Polym Eng Sci 51(2):403–410

    Article  CAS  Google Scholar 

  27. Zhiyong W, Wanxi Z, Guangyi C, Jicai L, Shu Y, Pei W, Lian L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783

    Article  Google Scholar 

  28. Liu M, Guo B, Du M, Chen F, Jia D (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030

    Article  CAS  Google Scholar 

  29. Xiao W, Wu P, Feng J, Yao R (2009) Influence of a novel β-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J Appl Polym Sci 111(2):1076–1085

    Article  CAS  Google Scholar 

  30. Zhang YF (2008) Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. J Polym Sci Part B: Polym Phys 46(9):911–916

    Article  CAS  Google Scholar 

  31. Shen CY, Zhou YG, Zheng GQ, Liu CT, Chen JB, Li Q (2008) Stretching-induced β-crystal of iPP: Influence of stretching ratio. Polym Eng Sci 48(12):2454–2458

    Article  CAS  Google Scholar 

  32. Dong M, Guo Z, Su Z, Yu J (2011) The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by β-form nucleating agent. J Appl Polym Sci 119(3):1374–1382

    Article  CAS  Google Scholar 

  33. Xiao W, Feng J (2010) Comparative investigation on crystallization conditions dependence of polymorphs composition for β-nucleated propylene/ethylene copolymer and propylene homopolymer. J Appl Polymer Sci 117(6):3247–3254

    CAS  Google Scholar 

  34. Zhao S, Xin Z (2010) Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B: Polym Phys 48(6):653–665

    Article  CAS  Google Scholar 

  35. Naffakh M, Marco C, Ellis G (2011) Novel Polypropylene/Inorganic Fullerene-like WS2 nanocomposites containing a β-Nucleating agent: dynamic crystallization and melting behavior. J Phys Chem B 115(37):10836–10843

    Article  CAS  Google Scholar 

  36. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    Article  CAS  Google Scholar 

  37. Marco C, Gomez MA, Ellis G, Arribas JM (2002) Activity of a β-nucleating agent for isotactic polypropylene and its influence on polymorphic transitions. J Appl Polym Sci 86(3):531–539

    Article  CAS  Google Scholar 

  38. Turner-Jones A, Aizlewood J, Beckett D (1964) Makromol Chem 75:134

    Article  CAS  Google Scholar 

  39. Li JX, Cheung WL, Jia D (40) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222

    Article  Google Scholar 

  40. Scherrer P (1918) Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Gottinger Nachrichten 26:98–100

    Google Scholar 

  41. Menyhard A, Varga J, Molnar G (2006) Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83(3):625–630

    Article  CAS  Google Scholar 

  42. Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Therm Anal Calorim 31(1):165–172

    Article  CAS  Google Scholar 

  43. Varga J (1995) Crystallization, melting and supermolecular structure of isotactic polypropylene. Polypropylene Struct Blends Compos 1:56–115

    Article  CAS  Google Scholar 

  44. Horvath Z (2010) The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. eXPRESS Polym Lett 4(2):101–114

    Article  CAS  Google Scholar 

  45. Sharon Xin L, Cebe P (1996) Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37(21):4857–4863

    Article  Google Scholar 

  46. Song M (2001) Rigid amorphous phase and low temperature melting endotherm of poly(ethylene terephthalate) studied by modulated differential scanning calorimetry. J Appl Polym Sci 81(11):2779–2785

    Article  CAS  Google Scholar 

  47. Xu H, Cebe P (2004) Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37(8):2797–2806

    Article  CAS  Google Scholar 

  48. Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43(8):3163–3170

    Article  CAS  Google Scholar 

  49. Righetti MC, Di Lorenzo ML, Tombari E, Angiuli M (2008) The low-temperature endotherm in Poly(ethylene terephthalate): partial melting and rigid amorphous fraction mobilization. The J Phys Chem B 112(14):4233–4241

    Article  CAS  Google Scholar 

  50. Di Lorenzo ML, Righetti MC, Cocca M, Wunderlich B (2010) Coupling between crystal melting and rigid amorphous fraction mobilization in Poly(ethylene terephthalate). Macromolecules 43(18):7689–7694

    Article  Google Scholar 

  51. Okazaki I, Wunderlich B (1996) Modulated differential scanning calorimetry in the glass transition region. V. Activation energies and relaxation times of poly(ethylene terephthalate)s. J Polym Sci Part B: Polym Phys 34(17):2941–2952

    Article  CAS  Google Scholar 

  52. Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34(17):5950–5960

    Article  CAS  Google Scholar 

  53. Hu W, Albrecht T, Strobl G (1999) Reversible surface melting of PE and PEO crystallites indicated by TMDSC. Macromolecules 32(22):7548–7554

    Article  CAS  Google Scholar 

  54. Genovese A, Shanks R (2004) Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim 75(1):233–248

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We express our sincerely thanks to the Program for New Century Excellent Talents in University (NCET-10-0562).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Ming Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Gai, J., Li, J. et al. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20, 70 (2013). https://doi.org/10.1007/s10965-012-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0070-8

Keywords

Navigation