Skip to main content
Log in

Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The relationship between the stereo-defect distribution and the crystallization behavior of Ziegler-Natta isotactic polypropylene (ZN-iPP) is an important issue, which has not been clearly studied up to now. In this work, the crystallization behavior of a series of iPP samples with similar average isotacticity but different stereo-defect distribution, polymerized with the same Ziegler-Natta catalyst system, was studied by means of differential scanning calorimetry (DSC) and polarized optical microscopy (POM) observation. The results of isothermal crystallization kinetics indicated that, as the distribution of stereo-defects becomes more uniform, the overall crystallization rate decreases gradually. Meanwhile, the results of self-nucleation isothermal crystallization kinetics showed that, the crystal growth rate decreases gradually and the energy barrier of crystal growth increases. Moreover, the POM observation illustrated that not only the crystal growth rate, but also the nucleation rate decrease gradually as the stereo-defect distribution becomes more uniform. The results above indicated that for iPP polymerized with the same Ziegler-Natta catalyst system, stereo-defect distribution plays an important role in determining the nucleation kinetics, crystal growth kinetics and the overall crystallization kinetics of the resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77(6):1708–1710

    Article  CAS  Google Scholar 

  2. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler-Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    Article  CAS  Google Scholar 

  3. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    Article  CAS  Google Scholar 

  4. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  5. Sita LR (2011) Duality in catalyst design: the synergistic coupling of steric and stereoelectronic control over polyolefin microstructure. Angew Chem Int Ed Engl 50(31):6963–6965

    Article  CAS  Google Scholar 

  6. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26(3):443–533

    Article  CAS  Google Scholar 

  7. Chen X, Ozisik R, Kumar SK, Choi P (2007) Influence of stereoerrors on the formation of helices during early stage crystallization of isotactic polyproyplene. J Polymer Sci B Polymer Phys 45(24):3349–3360

    Article  CAS  Google Scholar 

  8. De Rosa C, Auriemma F, Paolillo M, Resconi L, Camurati I (2005) Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene: effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules 38(22):9143–9154

    Article  Google Scholar 

  9. De Rosa C, Auriemma F, Resconi L (2005) Influence of chain microstructure on the crystallization kinetics of metallocene-made isotactic polypropylene. Macromolecules 38(24):10080–10088

    Article  Google Scholar 

  10. Krache R, Benavente R, López-Majada JM, Pereña JM, Cerrada ML, Pérez E (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40(19):6871–6878

    Article  CAS  Google Scholar 

  11. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2006) A microscopic insight into the deformation behavior of semicrystalline polymers: the role of phase transitions. Phys Rev Lett 96(16):167801

    Article  Google Scholar 

  12. Phillips RA, Nguyen T (2001) Structure, processing, morphology, and property relationships of biaxially drawn Ziegler-Natta/metallocene isotactic polypropylene film. J Appl Polym Sci 80(13):2400–2415

    Article  CAS  Google Scholar 

  13. Sakurai T, Nozue Y, Kasahara T, Mizunuma K, Yamaguchi N, Tashiro K, Amemiya Y (2005) Structural deformation behavior of isotactic polypropylene with different molecular characteristics during hot drawing process. Polymer 46(20):8846–8858

    Article  CAS  Google Scholar 

  14. De Rosa C, Auriemma F (2006) Structural-mechanical phase diagram of isotactic polypropylene. J Am Chem Soc 128(34):11024–11025

    Article  Google Scholar 

  15. De Rosa C, Auriemma F, Di Capua A, Resconi L, Guidotti S, Camurati I, Nifant'ev IE, Laishevtsev IP (2004) Structure-property correlations in polypropylene from metallocene catalysts: stereodefective, regioregular isotactic polypropylene. J Am Chem Soc 126(51):17040–17049

    Article  Google Scholar 

  16. Poon B, Rogunova M, Hiltner A, Baer E, Chum SP, Galeski A, Piorkowska E (2005) Structure and properties of homogeneous copolymers of propylene and 1-hexene. Macromolecules 38(4):1232–1243

    Article  CAS  Google Scholar 

  17. Yamada K, Matsumoto S, Tagashira K, Hikosaka M (1998) Isotacticity dependence of spherulitic morphology of isotactic polypropylene. Polymer 39(22):5327–5333

    Article  CAS  Google Scholar 

  18. Alamo RG, Blanco JA, Agarwal PK, Randall JC (2003) Crystallization rates of matched fractions of MgCl2-supported Ziegler Natta and metallocene isotactic poly(propylene)s. 1. The role of chain microstructure. Macromolecules 36(5):1559–1571

    Article  CAS  Google Scholar 

  19. Alamo RG (2004) Defects distribution of metallocene and MgCl2-supported Ziegler-Natta isotactic poly(propylenes) as revealed by fractionation and crystallization behaviors. Macromol Symp 213(1):303–314

    Article  CAS  Google Scholar 

  20. Lu H, Qiao J, Xu Y, Yang Y (2002) Effect of isotacticity distribution on the crystallization and melting behavior of polypropylene. J Appl Polym Sci 85(2):333–341

    Article  CAS  Google Scholar 

  21. Lu H, Qiao J, Yang Y (2002) Effect of isotacticity distribution on crystallization kinetics of polypropylene. Polym Int 51(12):1304–1309

    Article  CAS  Google Scholar 

  22. Chen J, Yin L, Yang X, Zhou E (2004) Relating the molecular structure and crystallization behavior of polypropylene. Polym Eng Sci 44(9):1749–1754

    Article  CAS  Google Scholar 

  23. La Carrubba V, Piccarolo S, Brucato V (2007) Crystallization kinetics of iPP: influence of operating conditions and molecular parameters. J Appl Polym Sci 104(2):1358–1367

    Article  Google Scholar 

  24. De Rosa C, Auriemma F, De Lucia G, Resconi L (2005) From stiff plastic to elastic polypropylene: polymorphic transformations during plastic deformation of metallocene-made isotactic polypropylene. Polymer 46(22):9461–9475

    Article  Google Scholar 

  25. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed 34(11):1143–1170

    Article  CAS  Google Scholar 

  26. Fischer D, Mülhaupt R (1994) The influence of regio- and stereoirregularities on the crystallization behaviour of isotactic poly(propylene)s prepared with homogeneous group IVa metallocene/methylaluminoxane Ziegler-Natta catalysts. Macromol Chem Phys 195(4):1433–1441

    Article  CAS  Google Scholar 

  27. Hubert L, David L, Séguéla R, Vigier G, Degoulet C, Germain Y (2001) Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallisation kinetics. Polymer 42(20):8425–8434

    Article  CAS  Google Scholar 

  28. Turner-Jones A, Aizlewood J, Beckett D (1964) Makromol Chem 75:134

    Article  CAS  Google Scholar 

  29. Lorenzo AT, Muller AJ (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polymer Sci B Polymer Phys 46(14):1478–1487

    Article  CAS  Google Scholar 

  30. Fillon B, Lotz B, Thierry A, Wittmann J (1993) Self–nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polymer Sci B Polymer Phys 31(10):1395–1405

    Article  CAS  Google Scholar 

  31. Fillon B, Thierry A, Wittmann J, Lotz B (1993) Self–nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β–α conversion and β–α growth transitions. J Polymer Sci B Polymer Phys 31(10):1407–1424

    Article  CAS  Google Scholar 

  32. Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self–nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polymer Sci B Polymer Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  33. Avrami M (1940) Kinetics of phase transition II. Transformation time relations. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  34. Chen YH, Zhong GJ, Lei J, Li ZM, Hsiao BS (2011) In situ synchrotron X-ray scattering study on isotactic polypropylene crystallization under the coexistence of shear flow and carbon nanotubes. Macromolecules 44(20):8080–8092

    Article  CAS  Google Scholar 

  35. Trujillo M, Arnal ML, Muller AJ, Bredeau S, Bonduel D, Dubois P, Hamley IW, Castelletto V (2008) Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization. Macromolecules 41(6):2087–2095

    Article  CAS  Google Scholar 

  36. Hoffman JD, Miller RL (1989) Response to criticism of nucleation theory as applied to crystallization of lamellar polymers. Macromolecules 22(8):3502–3505

    Article  CAS  Google Scholar 

  37. Hoffman JD, Miller RL (1988) Test of the reptation concept: crystal growth rate as a function of molecular weight in polyethylene crystallized from the melt. Macromolecules 21(10):3038–3051

    Article  CAS  Google Scholar 

  38. Hoffman JD (1985) The kinetic substrate length in nucleation-controlled crystallization in polyethylene fractions. Polymer 26(6):803–810

    Article  CAS  Google Scholar 

  39. Hoffman JD (1985) Theory of the substrate length in polymer crystallization: surface roughening as an inhibitor for substrate completion. Polymer 26(12):1763–1778

    Article  CAS  Google Scholar 

  40. Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17(4):878–885

    Article  CAS  Google Scholar 

  41. Lauritzen JJI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352

    Article  CAS  Google Scholar 

  42. Yang BX, Shi JH, Pramoda KP, Goh SH (2008) Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos Sci Tech 68(12):2490–2497

    Article  CAS  Google Scholar 

  43. Feng Y, Hay JN (1998) The measurement of compositional heterogeneity in a propylene—ethylene block copolymer. Polymer 39(26):6723–6731

    Article  CAS  Google Scholar 

  44. Xu W-B, He P-S (2001) Crystallization characteristics of polyoxymethylene with attapulgite as nucleating agent. Polym Eng Sci 41(11):1903–1912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincerely thanks to the Program for New Century Excellent Talents in University (NCET-10-0562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Cao, Y., Li, H. et al. Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19, 37 (2012). https://doi.org/10.1007/s10965-012-0037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0037-9

Keywords

Navigation