Skip to main content
Log in

Solution Thermophysics of l-Ascorbic Acid in Aqueous Tetrabutylammonium Hydrogen Sulfate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities and viscosities of l-ascorbic acid (vitamin C) in aqueous tetrabutylammonium hydrogen sulfate (Bu4NHSO4) solutions at several different concentrations of Bu4NHSO4 (\( m_{{{\text{Bu}}_{4} {\text{NHSO}}_{4} }} \) = 0.000, 0.005, 0.010, 0.015 and 0.020 mol·kg−1) were determined at T = (298.15–318.15) K under atmospheric pressure. Using these experimental data, values of the apparent molar volume (\( \phi_{V} \)), standard partial molar volume (\( \phi_{V}^{ 0} \)), the slope (\( S_{V}^{ *} \)), standard isobaric partial molar expansibility (\( \phi_{E}^{ 0} \)) and its temperature derivative \( ({{\partial \phi_{E}^{ 0} } \mathord{\left/ {\vphantom {{\partial \phi_{E}^{ 0} } {\partial T}}} \right. \kern-0pt} {\partial T}})_{p} \), the viscosity B-coefficient and solvation number (\( S_{\text{n}} \)), etc., were determined. Viscosity B-coefficients were further utilized to obtain the Gibbs energies of activation of viscous flow per mole of the solvents (\( \Delta \mu_{ 1}^{ 0\ne } \)) and of the solute (\( \Delta \mu_{ 2}^{ 0\ne } \)). The effects of molality, solute structure and temperature on all these parameters were analyzed in term of ion–ion and ion–solvent interactions, which revealed that the solutions are characterized predominantly by ion–solvent interactions and l-ascorbic acid behaves as a long-range structure maker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almasi, M., Sarkoohaki, B.: Density and viscosities of binary mixtures of cyclohexanone and 2 alkanols. J. Chem. Eng. Data 57, 309–316 (2012)

    Article  CAS  Google Scholar 

  2. Koga, Y.: Solution Thermodynamics and Its Application to Aqueous Solutions: a Differential Approach, 1st edn. Elsevier, New York (2007)

    Google Scholar 

  3. Marcus, Y.: Ions in Water and Biophysical Implications: from Chaos to Cosmos. Springer, New York (2012)

    Book  Google Scholar 

  4. Jiang, X., Zhu, C., Ma, Y.: Volumetric and viscometric studies of amino acids in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Thermodyn. 71, 50–63 (2014)

    Article  CAS  Google Scholar 

  5. Sarkar, A., Sinha, B.: Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc. 78, 1225–1240 (2013)

    Article  CAS  Google Scholar 

  6. Blanco, L.H., Vargas, E.F.: Apparent molar volumes of symetric and asymetric tetraalkylammonium salts in dilute aqueous solutions. J. Solution Chem. 35, 21–28 (2006)

    Article  CAS  Google Scholar 

  7. Jain, P., Sharma, S., Shukla, R.K.: Density and viscosity of tetrabutyl ammonium hydrogen sulphate and tetrabutyl ammonium chloride salts in aqueous and methanolic solution at 303 K. Phys. Chem. Liq. 51, 547–566 (2013)

    Article  CAS  Google Scholar 

  8. Jang, X., Zhu, C., Ma, Y.: Densities and viscosities of erythritol, xylitol and mannitol in l-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 58, 2970–2978 (2013)

    Article  Google Scholar 

  9. Banipal, T.S., Singh, H., Banipal, P.K., Singh, V.: Volumetric and viscometric studies on l-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine hydrochloride in water at temperatures (288.15–318.15) K at atmospheric pressure. Thermochim. Acta 553, 31–39 (2013)

    Article  CAS  Google Scholar 

  10. Roy, M.N., Sarkar, K., Sinha, A.: Physico-chemical studies of vitamin C in aqueous 1-propanol: manifestation of molecular interactions. J. Solution Chem. 43, 2212–2223 (2014)

    Article  CAS  Google Scholar 

  11. Shoemaker, D.P., Garland, C.W.: Experiments in Physical Chemistry, pp. 131–138. McGraw-Hill, New York (1967)

    Google Scholar 

  12. Marsh, K.N.: Recommended Reference Materials for the Realization of Physicochemical Properties. Blackwell Scientific Publications, Oxford (1987)

    Google Scholar 

  13. Dean, J.A.: Lange’s Handbook of Chemistry, 11th edn. McGraw-Hill, New York (1973)

    Google Scholar 

  14. Sarkar, B.K., Choudhury, A., Sinha, B.: Excess molar volumes, excess viscosities and ultrasonic speeds of sound of binary mixtures of 1,2-dimethoxyethane with some aromatic liquids at 298.15 K. J. Solution Chem. 41, 53–74 (2012)

    Article  CAS  Google Scholar 

  15. Sinha, B., Pradhan, R., Shah, S., Brahman, D., Sarkar, A.: Thermophysical properties of binary mixtures of N,N-dimethylformamide with three cyclic ethers. J. Serb. Chem. Soc. 78, 1443–1460 (2013)

    Article  CAS  Google Scholar 

  16. Brahman, D., Sinha, B.: Non-covalent interactions between {N,N/-bis[(2-pyridinyl)methylene]-1,2-benzenediamine]-bis(nitrato)}Cu(II) with pyridoxine hydrochloride in methanol at T = (298.15, 308.15 and 318.15) K. J. Chem. Thermodyn. 75, 136–144 (2014)

    Article  CAS  Google Scholar 

  17. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1964)

    Google Scholar 

  18. Covington, A.K., Dickinson, T.: Physical Chemistry of Organic Solvent Systems. Plenum Press, New York (1973)

    Book  Google Scholar 

  19. Jaiswal, P.V., Ijeri, V.S., Srivastava, A.K.: Effects of surfactants on the dissociation constants of ascorbic acid and maleic acids. Colloids Surf. B 46, 45–51 (2005)

    Article  CAS  Google Scholar 

  20. Mussini, P.R., Longhi, P., Mussini, T., Rondinini, S.: The second ionization constant of aqueous sulphuric acid at 298.15 K from the electromotive force of the unbuffered cell: H2(g)/H2SO4(aq)/Hg2SO4(s)/Hg. J. Chem. Thermodyn. 21, 625–629 (1989)

    Article  CAS  Google Scholar 

  21. Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)

    Article  CAS  Google Scholar 

  22. Dickson, D.K., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 25 °C. J. Phys. Chem. 94, 7978–7985 (1990)

    Article  CAS  Google Scholar 

  23. Dhondge, S.S., Deshmukh, D.W., Paliwal, L.J.: Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1·HCl and B6·HCl at temperatures (278.15, 288.15, and 298.15) K. J. Chem. Thermodyn. 58, 149–157 (2013)

    Article  CAS  Google Scholar 

  24. Zhao, C., Ma, P., Li, J.: Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and l-ascorbic acid solutions at T = 298.15 K. J. Chem. Thermodyn. 37, 37–42 (2005)

    Article  CAS  Google Scholar 

  25. Sastry, N.V., Valand, P.K., Macwan, P.M.: Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K. J. Chem. Thermodyn. 49, 14–23 (2012)

    Article  CAS  Google Scholar 

  26. Friedman, H.L., Krishnan, C.V., Franks, F. (eds.): Water: a Comprehensive Treatise, Chap. 1, vol. 3. Plenum Press, New York (1973)

  27. Bhatt, R., Ahlluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)

    Article  Google Scholar 

  28. Millero, F.J.: Water and Aqueous Solutions: Structure, Thermodynamics and Transport Processes. Wiley-Interscience, New York (1972)

    Google Scholar 

  29. Hepler, L.G.: Solute–solvent interactions of some salts in THF + water mixtures by volumetric measurements. Can. J. Chem. 47, 4617–4622 (1969)

    Google Scholar 

  30. Franks, F.: The hydrophobic interactions. In: Franks, F. (ed.) Water: Aqueous Solutions of Amphibiles and Macromolecules. Plenum Press, London (1975)

    Google Scholar 

  31. Stokes, R.H., Mills, R.: Viscosity of Electrolytes and Related Properties. Pergamon Press, London (1965)

    Google Scholar 

  32. Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. J. Chem. Soc. Faraday Trans. 70, 795–806 (1974)

    Article  CAS  Google Scholar 

  33. Tyrrell, H.J.V., Kennerley, M.: Viscosity B-coefficients between 5° and 20° for glycolamide, glycine, and N-methylated glycines in aqueous solution. J. Chem. Soc. A 11, 2724–2728 (1968)

    Article  Google Scholar 

  34. Glasston, S., Laidler, K., Eyring, H.: Theory of Rate Processes. McGraw-Hill, New York (1941)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (DRS-SAP-III, No. F540/12/DRS/2013) for financial support. One of the authors (D. K. M) is also thankful to UGC, India for granting him an UGC BSR Research Fellowship in Science (Ref. No.: 4-1/2008 (BSR)). This study was funded by the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (DRS-SAP-III, No. F540/12/DRS/2013) and we thank them for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Sinha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Mishra, D.K. & Sinha, B. Solution Thermophysics of l-Ascorbic Acid in Aqueous Tetrabutylammonium Hydrogen Sulfate. J Solution Chem 45, 560–573 (2016). https://doi.org/10.1007/s10953-016-0454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0454-1

Keywords

Navigation