Skip to main content
Log in

Comparison of conventional and Monte Carlo simulation-based probabilistic seismic hazard analyses for Shiraz city, southern Iran

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Estimation of ground-motion amplitudes of different hazard levels is of paramount importance in planning of urban development of any metropolis. Such estimation can be computed through a probabilistic seismic hazard analysis (PSHA). This paper concentrates on the PSHA of an area located in Shiraz city, southern Iran. The area includes whole of Shiraz city (i.e., one of the largest and most populous cities of Iran) and its outskirts. Conventional and Monte Carlo simulation-based approaches are utilized to perform the PSHA of the studied area. Two areal seismic source models are delineated, and thence seismicity parameters of all zones associated with their corresponding uncertainties are computed. Uncertainties in ground-motion prediction are accounted for via three ground-motion prediction equations (GMPEs) within the logic tree framework. These GMPEs are applied to estimate bedrock ground shaking (Vs30 = 760 m/s) for several return periods (i.e., 75, 475, 975, and 2475 years). In general, the results of the two abovementioned PSHA approaches show relatively similar results. However, the Monte Carlo simulation-based approach overpredicts bedrock spectral accelerations at periods of 0.4–2.5 s compared to the conventional PSHA approach for return periods of 475, 975, and 2475 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthquake Spectra 21(2):603–607

    Article  Google Scholar 

  • Alvarez L, Lindholm C, Villalón M (2016) Seismic hazard for Cuba: a new approach. Bull Seismol Soc Am 107:229–239. https://doi.org/10.1785/0120160074

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (2005) A history of Persian earthquakes. Cambridge university press, Cambridge

    Google Scholar 

  • Assatourians K, Atkinson GM (2013) EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524

    Article  Google Scholar 

  • Berberian M (1994) Natural hazards and the first earthquake catalogue of Iran. International Institute of Earthquake Engineers and Seismology (IIEES), Tehran, Iran.

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224

    Article  Google Scholar 

  • Berberian M, Mohajer-Ashjai A (1977) Seismic risk map of Iran, a proposal. Geol Surv Iran 40:121–148

    Google Scholar 

  • Building and Housing Research Center (2014) Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, Fourth Ed., Tehran, Iran.

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Danciu L, Şeşetyan K, Demircioglu M, Gülen L, Zare M, Basili R, Elias A, Adamia S, Tsereteli N, Yalçın H (2016) The 2014 earthquake model of the middle east: seismogenic sources. Bull Earthq Eng 16:3465–3496. https://doi.org/10.1007/s10518-017-0096-8

    Article  Google Scholar 

  • Dawood HM, Rodriguez-Marek A, Bayless J, Goulet C, Thompson E (2016) A flatfile for the KiK-net database processed using an automated protocol. Earthquake Spectra 32(2):1281–1302

    Article  Google Scholar 

  • Delavaud E, Cotton F, Akkar S, Scherbaum F, Danciu L, Beauval C, Drouet S, Douglas J, Basili R, Sandikkaya MA (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16(3):451–473

    Article  Google Scholar 

  • Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167(2):761–778

    Article  Google Scholar 

  • Gardner J, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Ghasemi H, Zare M, Fukushima Y, Koketsu K (2009) An empirical spectral ground-motion model for Iran. J Seismol 13(4):499–515

    Article  Google Scholar 

  • Hessami K, Jamali F (2006) Explanatory notes to the map of major active faults of Iran. J Seismol Earthq Eng 8(1):1–11

    Google Scholar 

  • Jalalalhosseini SM, Zafarani H, Zare M (2018) Time-dependent seismic hazard analysis for the Greater Tehran and surrounding areas. J Seismol 22 (1):187–215

    Article  Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T, Kalafat D, Duman TY, Azak TE, Özalp S, Emre Ö (2016) An improved earthquake catalogue (M≥ 4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng 16:3317–3338. https://doi.org/10.1007/s10518-016-0064-8

    Article  Google Scholar 

  • Khodaverdian A, Zafarani H, Schultz KW, Rahimian M (2016a) Recurrence Time Distributions of Large Earthquakes in Eastern Iran. Bull Seismol Soc Am 106(6):2624–2639

    Article  Google Scholar 

  • Khodaverdian A, Zafarani H, Rahimian M (2016b) Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran. Geophys J Int 206(1):379–394

    Article  Google Scholar 

  • Khodaverdian A, Zafarani H, Rahimian M, Dehnamaki V (2016c) Seismicity parameters and spatially smoothed seismicity model for Iran. Bull Seismol Soc Am 106(3):1133–1150

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, m max. Pure Appl Geophys 161(8):1655–1681

    Article  Google Scholar 

  • Kijko A (2010) Seismic hazard assessment for selected area, Description of MATLAB Code, HA2, 2.05, University of Pretoria, Pretoria, South Africa

  • Kijko A, Sellevoll M (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79(3):645–654

    Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82(1):120–134

    Google Scholar 

  • Lapajne J, Motnikar BŠ, Zupančič P (2003) Probabilistic seismic hazard assessment methodology for distributed seismicity. Bull Seismol Soc Am 93(6):2502–2515

    Article  Google Scholar 

  • Maggi A, Jackson J, Mckenzie D, Priestley K (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28(6):495–498

    Article  Google Scholar 

  • Mirzaei N, Mengtan G, Yuntai C (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J Earthq Predict Res 7:465–495

    Google Scholar 

  • Mousavi M, Ansari A, Zafarani H, Azarbakht A (2012) Selection of ground motion prediction models for seismic hazard analysis in the Zagros region, Iran. J Earthq Eng 16(8):1184–1207

    Article  Google Scholar 

  • Nissen E, Tatar M, Jackson JA, Allen MB (2011) New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys J Int 186(3):928–944

    Article  Google Scholar 

  • Nowroozi AA (1976) Seismotectonic provinces of Iran. Bull Seismol Soc Am 66(4):1249–1276

    Google Scholar 

  • Nowroozi AA, Ahmadi G (1986) Analysis of earthquake risk in Iran based on seismotectonic provinces. Tectonophysics 122:89–114

    Article  Google Scholar 

  • Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D’amico V (2012) Program for computing seismic hazard (CRISIS 2012). Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Mexico

  • Reasenberg P (1985) Second-order moment of Central California seismicity, 1969–1982. J Geophys Res Solid Earth 90:5479–5495

    Article  Google Scholar 

  • Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motion. Bull Seismol Soc Am 94(6):2164–2185

    Article  Google Scholar 

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99(6):3234–3247

    Article  Google Scholar 

  • Şeşetyan K, Danciu L, Demircioglu M, Giardini D, Erdik M, Akkar S, Gu¨len L, Zare M et al (2018) The 2014 earthquake model of the Middle East: overview and results. Bull Earthq Eng. https://doi.org/10.1007/s10518-018-0346-4, 16, 3535, 3566

    Article  Google Scholar 

  • Shabani E, Mirzaei N (2007) Probabilistic seismic hazard assessment of the Kermanshah-Sanandaj region of western Iran. Earthquake Spectra 23(1):175–197

    Article  Google Scholar 

  • Shahvar MP, Zare M, Castellaro S (2013) A unified seismic catalog for the Iranian plateau (1900–2011). Seismol Res Lett 84(2):233–249

    Article  Google Scholar 

  • Sharma ML, Douglas J, Bungum H, Kotadia J (2009) Ground-motion prediction equations based on data from the Himalayan and Zagros regions. J Earthq Eng 13(8):1191–1210

    Article  Google Scholar 

  • Sil A, Sitharam T (2016) Site specific design response spectrum proposed for the capital city of Agartala, Tripura. Geomat, Nat Haz Risk 7(5):1610–1630

    Article  Google Scholar 

  • Talbi A, Nanjo K, Satake K, Zhuang J, Hamdache M (2013) Comparison of seismicity declustering methods using a probabilistic measure of clustering. J Seismol 17(3):1041–1061

    Article  Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys J Int 156(3):506–526

    Article  Google Scholar 

  • Tavakoli B (1996) Major seismotectonic provinces of Iran. International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

    Google Scholar 

  • Tavakoli B, Ghafory-Ashtiany M (1999) Seismic hazard assessment of Iran. Ann Geophys 42:6. https://doi.org/10.4401/ag-3781.

    Article  Google Scholar 

  • Tavakoli F, Walpersdorf A, Authemayou C, Nankali H, Hatzfeld D, Tatar M, Djamour Y, Nilforoushan F, Cotte N (2008) Distribution of the right-lateral strike–slip motion from the main recent fault to the Kazerun fault system (Zagros, Iran): evidence from present-day GPS velocities. Earth Planet Sci Lett 275(3):342–347

    Article  Google Scholar 

  • VahidiFard H, Zafarani H, Sabbagh-Yazdi SR, Hadian MA (2017) Seismic hazard analysis using simulated ground-motion time histories: The case of the Sefidrud Dam, Iran. Soil Dyn Earthq Eng 99:20–34

    Article  Google Scholar 

  • Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-52382934.In,

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Zafarani H, Soghrat M (2012) Simulation of ground motion in the Zagros region of Iran using the specific barrier model and the stochastic method. Bull Seismol Soc Am 102(5):2031–2045

    Article  Google Scholar 

  • Zafarani H, Hajimohammadi B, Jalalalhosseini SM (2017) Earthquake Hazard in the Tehran Region based on the Characteristic Earthquake Model. J Earthq Eng. https://doi.org/10.1080/13632469.2017.1387189

  • Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Khan MA, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772

    Article  Google Scholar 

  • Zimmaro P, Stewart JP (2017) Site-specific seismic hazard analysis for Calabrian dam site using regionally customized seismic source and ground motion models. Soil Dyn Earthq Eng 94:179–192

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Villani and M. Ordaz for kindly providing of CRISIS code. H. Zafarani thanks the continuing support of the International Institute of Earthquake Engineering and Seismology during this research. We also thank the constructive comments of reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Zafarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandarinejad, A., Zafarani, H. & Jahanandish, M. Comparison of conventional and Monte Carlo simulation-based probabilistic seismic hazard analyses for Shiraz city, southern Iran. J Seismol 22, 1629–1643 (2018). https://doi.org/10.1007/s10950-018-9790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-018-9790-5

Keywords

Navigation