Skip to main content
Log in

Coercivity Enhancement and the Analysis of Asymmetric Loops in a Perpendicularly Magnetized Thin Film

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The enhancement of coercive field values depending on the measurement angle in a perpendicularly magnetized continuous thin film and the asymmetries in its hysteresis loops are analyzed and discussed by means of Hall effect measurements. Anomalous Hall effect and planar Hall effect contributions to the Hall results are separated to make the asymmetric loops symmetrical. The magnetic properties of the sample are also measured by using a vibrating sample magnetometer and magneto-optic Kerr effect methods. The data obtained by the measurement systems are compared, and the differences in their results are discussed. The results of the work highlight the importance of choosing the correct setup for the measurements and the importance of the measurement angle for the Hall effect studies in magnetic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988). https://doi.org/10.1103/PhysRevLett.61.2472

    Article  ADS  Google Scholar 

  2. Binasch, G., Grunberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B. 39(7), 4828–4830 (1989). https://doi.org/10.1103/PhysRevB.39.4828

    Article  ADS  Google Scholar 

  3. Manchon, A., Železný, J., Miron, I.M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K., Gambardella, P.: Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91(3), 035004 (2019). https://doi.org/10.1103/RevModPhys.91.035004

    Article  ADS  MathSciNet  Google Scholar 

  4. Rowan-Robinson, R.M., Hindmarch, A.T., Atkinson, D.: Efficient current-induced magnetization reversal by spin-orbit torque in Pt/Co/Pt. J. Appl. Phys. 124(18), 183901 (2018). https://doi.org/10.1063/1.5046503

    Article  ADS  Google Scholar 

  5. Neumann, L., Meinert, M.: Influence of the Hall-bar geometry on harmonic Hall voltage measurements of spin-orbit torques. AIP Adv. 8(9), 095320 (2018). https://doi.org/10.1063/1.5037391

    Article  ADS  Google Scholar 

  6. Li, P., Liu, T., Chang, H., Kalitsov, A., Zhang, W., Csaba, G., Li, W., Richardson, D., DeMann, A., Rimal, G., Dey, H., Jiang, J.S., Porod, W., Field, S.B., Tang, J., Marconi, M.C., Hoffmann, A., Mryasov, O., Wu, M.: Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 7, (2016). https://doi.org/10.1038/ncomms12688

  7. Gambardella, P., Miron, I.M.: Current-induced spin–orbit torques. Phil. Trans. R. Soc. A. 369(1948), 3175–3197 (2011). https://doi.org/10.1098/rsta.2010.0336

    Article  ADS  Google Scholar 

  8. Ralph, D.C., Stiles, M.D.: Spin transfer torques. J. Magn. Magn. Mater. 320(7), 1190–1216 (2008). https://doi.org/10.1016/j.jmmm.2007.12.019

    Article  ADS  Google Scholar 

  9. Garcia, D., Lou, P.C., Butler, J., Kumar, S.: Spin-orbit torque induced reversible coercivity change in Co/Pd multilayer thin films. Solid State Commun. 246, 1–4 (2016). https://doi.org/10.1016/j.ssc.2016.07.029

    Article  ADS  Google Scholar 

  10. Ryu, J., Avci, C.O., Karube, S., Kohda, M., Beach, G.S.D., Nitta, J.: Crystal orientation dependence of spin-orbit torques in Co/Pt bilayers. Appl. Phys. Lett. 114(14), 142402 (2019). https://doi.org/10.1063/1.5090610

    Article  ADS  Google Scholar 

  11. Garello, K., Miron, I.M., Avci, C.O., Freimuth, F., Mokrousov, Y., Blugel, S., Auffret, S., Boulle, O., Gaudin, G., Gambardella, P.: Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8(8), 587–593 (2013). https://doi.org/10.1038/nnano.2013.145

    Article  ADS  Google Scholar 

  12. Lin, P.-H., Yang, B.-Y., Tsai, M.-H., Chen, P.-C., Huang, K.-F., Lin, H.-H., Lai, C.-H.: Manipulating exchange bias by spin–orbit torque. Nat. Mater. 18(4), 335–341 (2019). https://doi.org/10.1038/s41563-019-0289-4

    Article  ADS  Google Scholar 

  13. Cox, C.D.W., Caruana, A.J., Cropper, M.D., Morrison, K.: Anomalous Nernst effect in Co2MnSi thin films. J. Phys. D. Appl. Phys. 53(3), 035005 (2019). https://doi.org/10.1088/1361-6463/ab4eeb

    Article  ADS  Google Scholar 

  14. Lee, K.-S., Lee, S.-W., Min, B.-C., Lee, K.-J.: Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102(11), 112410 (2013). https://doi.org/10.1063/1.4798288

    Article  ADS  Google Scholar 

  15. Zhang, F., Liu, Z., Wen, F., Liu, Q., Li, X., Ming, X.: Magnetoresistance and anomalous Hall effect with Pt spacer thickness in the spin-valve Co/Pt/[Co/Pt]2 multilayers. J. Supercond. Nov. Magn. 30(2), 533–538 (2017). https://doi.org/10.1007/s10948-016-3820-8

    Article  Google Scholar 

  16. Li, F., Chen, F., Zhang, M., Zhang, K., Liu, W., Zhao, D., Yang, B.: Anomalous Hall effect in epitaxial Ni–Mn–Ga thin films grown on MgO(001) substrate during the martensitic transformation. J. Supercond. Nov. Magn. 32(10), 3183–3189 (2019). https://doi.org/10.1007/s10948-019-5073-9

    Article  Google Scholar 

  17. Wang, R., Xiao, Z., Liu, H., Quan, Z., Zhang, X., Wang, M., Wu, M., Xu, X.: Enhancement of perpendicular magnetic anisotropy and spin-orbit torque in Ta/Pt/Co/Ta multi-layered heterostructures through interfacial diffusion. Appl. Phys. Lett. 114(4), 042404 (2019). https://doi.org/10.1063/1.5064643

    Article  ADS  Google Scholar 

  18. Pan, C., An, H., Harumoto, T., Zhang, Z., Nakamura, Y., Shi, J.: Control of the perpendicular magnetic anisotropy and perpendicular exchange bias in CoPt/CoOx thin films. J. Magn. Magn. Mater. 484, 320 (2019). https://doi.org/10.1016/j.jmmm.2019.04.050

    Article  ADS  Google Scholar 

  19. Hirohata, A., Frost, W., Samiepour, M., Kim, J.-y.: Perpendicular magnetic anisotropy in Heusler alloy films and their magnetoresistive junctions. Materials. 11(1), 105 (2018). https://doi.org/10.3390/ma11010105

  20. Engel, C., Goolaup, S., Luo, F., Lew, W.S.: Characterizing angular dependence of spin-orbit torque effective fields in Pt/(Co/Ni)2/Co/IrMn structure. IEEE Trans. Magn. 53(11), 1–4 (2017). https://doi.org/10.1109/TMAG.2017.2704520

    Article  Google Scholar 

  21. Tang, M., Zhang, Z., Jin, Q.: Manipulation of perpendicular exchange bias effect in [Co/Ni]N/(Cu, Ta)/TbCo multilayer structures. AIP Adv. 5(8), 087153 (2015). https://doi.org/10.1063/1.4929474

    Article  ADS  Google Scholar 

  22. Elphick, K., O’Grady, K., Vallejo-Fernandez, G.: Perpendicular exchange Bias in (Co/Pt) n multilayers. IEEE Trans. Magn. 55(7), 1–6 (2019). https://doi.org/10.1109/TMAG.2019.2892205

    Article  Google Scholar 

  23. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102(5), 1413–1414 (1956). https://doi.org/10.1103/PhysRev.102.1413

    Article  ADS  Google Scholar 

  24. Hellwig, O., Maat, S., Kortright, J.B., Fullerton, E.E.: Magnetic reversal of perpendicularly-biased Co/Pt multilayers. Phys. Rev. B. 65(14), 144418 (2002). https://doi.org/10.1103/PhysRevB.65.144418

    Article  ADS  Google Scholar 

  25. Demirci, E., Öztürk, M., Pişkin, H., Akdoğan, N.: Angle-dependent inverted hysteresis loops in an exchange-biased [Co/Pt]5/IrMn thin film. J. Supercond. Nov. Magn. 33(3), 721–726 (2020). https://doi.org/10.1007/s10948-019-05235-0

    Article  Google Scholar 

  26. Öztürk, M., Demirci, E., Topkaya, R., Kazan, S., Akdoğan, N., Obaida, M., Westerholt, K.: Effect of exchange bias on magnetic anisotropies in Fe/CoO bilayers. J. Supercond. Nov. Magn. 1–7 (2011). https://doi.org/10.1007/s10948-011-1227-0

  27. Sort, J., Baltz, V., Garcia, F., Rodmacq, B., Dieny, B.: Tailoring perpendicular exchange bias in [Pt/Co]-IrMn multilayers. Phys. Rev. B. 71(5), 054411 (2005). https://doi.org/10.1103/PhysRevB.71.054411

    Article  ADS  Google Scholar 

  28. Maat, S., Takano, K., Parkin, S.S.P., Fullerton, E.E.: Perpendicular exchange Bias of Co/Pt multilayers. Phys. Rev. Lett. 87(8), 087202 (2001). https://doi.org/10.1103/PhysRevLett.87.087202

    Article  ADS  Google Scholar 

  29. Zarefy, A., Lechevallier, L., Lardé, R., Chiron, H., Le Breton, J.M., Baltz, V., Rodmacq, B., Dieny, B.: Influence of Co layer thickness on the structural and magnetic properties of (Pt/CotCo)3/PttPt/IrMn multilayers. J. Phys. D. Appl. Phys. 43(21), 215004 (2010). https://doi.org/10.1088/0022-3727/43/21/215004

    Article  ADS  Google Scholar 

  30. Ji, X., Pakhomov, A.B., Krishnan, K.M.: Asymmetric magnetic reversal of perpendicular exchange biased (Co∕Pt)5∕IrMn probed by magnetoresistance and magnetic force microscopy. J. Appl. Phys. 101(9), 09E507 (2007). https://doi.org/10.1063/1.2710227

    Article  Google Scholar 

  31. Tsai, C.Y., Hsu, J.-H., Lin, K.F.: Perpendicular exchange bias behaviors of CoPt/IrMn and CoPt/FeMn bilayers: a comparative study. J. Appl. Phys. 117(17), 17D153 (2015). https://doi.org/10.1063/1.4919116

    Article  Google Scholar 

  32. Demirci, E., Öztürk, M., Topkaya, R., Kazan, S., Akdoğan, N., Obaida, M., Westerholt, K.: Thickness and temperature dependence of exchange bias in Co/CoO bilayers. J. Supercond. Nov. Magn. 25(8), 2591–2595 (2012). https://doi.org/10.1007/s10948-011-1226-1

    Article  Google Scholar 

  33. Czapkiewicz, M., Stobiecki, T., Rak, R., Zoladz, M., van Dijken, S.: Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy. J. Magn. Magn. Mater. 316(2), 151–154 (2007). https://doi.org/10.1016/j.jmmm.2007.02.039

    Article  ADS  Google Scholar 

  34. Bai, X.J., Shi, X.X., Cao, C.D., Yang, M., Zhang, W.X.: Subloop magnetic moment reversal-induced recovery effect in exchange-biased IrMn/Pt/Co/Pt multilayers. J. Supercond. Nov. Magn. 29(4), 905–910 (2016). https://doi.org/10.1007/s10948-015-3353-6

    Article  Google Scholar 

  35. Letellier, F., Baltz, V., Lechevallier, L., Lardé, R., Jacquot, J.F., Rodmacq, B., Breton, J.M.L., Dieny, B.: Effects of sputter-deposition-induced and post-deposition thermally activated intermixing on the exchange bias properties of [Pt/Co]×3/(Pt)/IrMn films. J. Phys. D. Appl. Phys. 45(27), 275001 (2012). https://doi.org/10.1088/0022-3727/45/27/275001

    Article  ADS  Google Scholar 

  36. Öztürk, M., Demirci, E., Erkovan, M., Öztürk, O., Akdoğan, N.: Coexistence of perpendicular and in-plane exchange bias using a single ferromagnetic layer in Pt/Co/Cr/CoO thin film. EPL. 114(1), 17008 (2016). https://doi.org/10.1209/0295-5075/114/17008

    Article  ADS  Google Scholar 

  37. Öztürk, M., Akdoğan, N.: Design of a multifunctional sample probe for transport measurements. Turk. J. Phys. 42, 97–103 (2018). https://doi.org/10.3906/fiz-1702-6

    Article  Google Scholar 

  38. Ogrin, F.Y., Lee, S.L., Ogrin, Y.F.: Investigation of perpendicular anisotropy of a thin film using the planar Hall effect. J. Magn. Magn. Mater. 219(3), 331–339 (2000). https://doi.org/10.1016/S0304-8853(00)00445-5

    Article  ADS  Google Scholar 

  39. Kumar, S., Laughlin, D.E.: Methodology for investigating the magnetization process of the storage layer in double-layered perpendicular magnetic recording media using the anomalous Hall effect. IEEE Trans. Magn. 41(3), 1200–1208 (2005). https://doi.org/10.1109/TMAG.2004.843310

    Article  ADS  Google Scholar 

  40. Osgood, R.M., Clemens, B.M., White, R.L.: Asymmetric magneto-optic response in anisotropic thin films. Phys. Rev. B. 55(14), 8990–8996 (1997). https://doi.org/10.1103/PhysRevB.55.8990

    Article  ADS  Google Scholar 

  41. Akdogan, N., Rameev, B.Z., Dorosinsky, L., Sozeri, H., Khaibullin, R.I., Aktas, B., Tagirov, L.R., Westphalen, A., Zabel, H.: Anisotropy of ferromagnetism in Co-implanted rutile. J. Phys. Condens. Matter. 17(34), L359–L366 (2005). https://doi.org/10.1088/0953-8984/17/34/L01

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Bayram Kocaman for the technical support during the film depositions. The author would also like to acknowledge Bulat Rami for the fruitful discussions.

Funding

This work was supported by the research fund of the Gebze Technical University through the project no. BAP 2018-A105-43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Öztürk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, M. Coercivity Enhancement and the Analysis of Asymmetric Loops in a Perpendicularly Magnetized Thin Film. J Supercond Nov Magn 33, 3097–3105 (2020). https://doi.org/10.1007/s10948-020-05564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05564-5

Keywords

Navigation