Skip to main content
Log in

Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bi2S3 and Fe3O4 nanostructures as well as Bi2S3@Fe3O4 nanocomposites were produced using hydrothermal synthesis. Scanning electron microscopy (SEM), energy dispersive spectra (EDS) and X-ray diffraction (XRD) were used in the characterization of the nanocomposites. The effect of heat treatment on chemical, physical and magnetic properties of the nanostructures was investigated in this study. It was determined that the duration of heat treatment affects the size and shape of the nanostructures. Bi2S3 samples produced using less than 12 h of heat treatment formed in nanoflower-like shapes whereas when the heat treatment was extended to 24 h, the samples formed in nanoribbon-like shapes. The study concludes that an increase in the duration of heat treatment enhances the saturation value of magnetization of Fe3O4 nanostructures. Bi2S3 nanostructures were doped with Fe3O4 nanostructures to produce Bi2S3@Fe3O4 nanocomposites which have significant magnetic properties. An increased duration of heat treatment increases the magnetic saturation values of Fe3O4 and Bi2S3@Fe3O4 nanostructures. Bi2S3, Fe3O4 and Bi2S3@Fe3O4 samples show X-ray imaging contrast enhancement properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roduner, E.: Size matters: why nanomaterials are different (2006)

  2. Koç, M.M., Aslan, N., Kao, A.P., Barber, A.H.: Evaluation of X-ray tomography contrast agents: a review of production, protocols, and biological applications. Microsc. Res. Tech. 82, 812–848 (2019). https://doi.org/10.1002/jemt.23225

    Article  Google Scholar 

  3. Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). https://doi.org/10.1021/cr040090g

    Article  Google Scholar 

  4. Johnston, R.L.: Atomic and molecular clusters (2002)

  5. Kurban, H., Kurban, M., Dalkılıç, M.: Density-functional tight-binding approach for the structural analysis and electronic structure of copper hydride metallic nanoparticles. Mater. Today Commun. 21, 100648 (2019). https://doi.org/10.1016/j.mtcomm.2019.100648

    Article  Google Scholar 

  6. Kurban, M., Barış Malcıoğlu, O., Erkoç, Ş.: Structural and thermal properties of Cd–Zn–Te ternary nanoparticles: molecular-dynamics simulations. Chem. Phys. 464, 40–45 (2016). https://doi.org/10.1016/J.CHEMPHYS.2015.11.003

    Article  Google Scholar 

  7. Kurban, M.: Electronic structure, optical and structural properties of Si, Ni, B and N-doped a carbon nanotube: DFT study. Optik (Stuttg). 172(295–301), 295 (2018). https://doi.org/10.1016/j.ijleo.2018.07.028

    Article  ADS  Google Scholar 

  8. Köylüoǧlu, B., Alaei, S., Kurban, M.: Molecular dynamics study on composition and temperature dependences of mechanical properties of CdTeSe nanowires under uniaxial stretching. Int. J. Mod. Phys. B. 33, 1950373 (2019). https://doi.org/10.1142/S0217979219503739

    Article  ADS  Google Scholar 

  9. KURBAN, M.: Size- and composition-dependent structure of ternary Cd-Te-Se nanoparticles. Turk. J. Phys. 42, 443–454 (2018)

    Article  Google Scholar 

  10. Shipway, A.N., Katz, E., Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem. 1, 18–52 (2000). https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L

    Article  Google Scholar 

  11. Xia, A., Chen, M., Gao, Y., Wu, D., Feng, W., Li, F.: Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials. 33, 5394–5405 (2012). https://doi.org/10.1016/J.BIOMATERIALS.2012.04.025

    Article  Google Scholar 

  12. Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., Liu, J.-H., Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., Liu, J.-H.: Metal oxide nanostructures and their gas sensing properties: a review. Sensors. 12, 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  Google Scholar 

  13. Sathya Raj, D., Krishnakumar, T., Jayaprakash, R., Prakash, T., Leonardi, G., Neri, G.: CO sensing characteristics of hexagonal-shaped CdO nanostructures prepared by microwave irradiation. Sensors Actuators B Chem. 171–172, 853–859 (2012). https://doi.org/10.1016/J.SNB.2012.05.083

    Article  Google Scholar 

  14. Yakuphanoglu, F., Caglar, Y., Caglar, M., Ilican, S.: ZnO/p-Si heterojunction photodiode by solgel deposition of nanostructure n-ZnO film on p-Si substrate. Mater. Sci. Semicond. Process. 13, 137–140 (2010). https://doi.org/10.1016/j.mssp.2010.05.005

    Article  Google Scholar 

  15. Ameen, B.A.H., Yildiz, A., Farooq, W.A., Yakuphanoglu, F.: Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions. Silicon. 11, 563–571 (2019). https://doi.org/10.1007/s12633-017-9656-4

    Article  Google Scholar 

  16. Gupta, R.K.K., Yakuphanoglu, F., Amanullah, F.M.M.: Band gap engineering of nanostructure Cu doped CdO films. 43, 1666–1668 (2011)

  17. Aydın, C., Al-Hartomy, O.A., Al-Ghamdi, A.A., Al-Hazmi, F., Yahia, I.S., El-Tantawy, F., Yakuphanoglu, F.: Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents. J. Electroceram. 29, 155–162 (2012). https://doi.org/10.1007/s10832-012-9748-x

    Article  Google Scholar 

  18. Yakuphanoglu, F., Aslam Farooq, W.: Photoresponse and electrical characterization of photodiode based nanofibers ZnO and Si. Mater. Sci. Semicond. Process. 14, 207–211 (2011). https://doi.org/10.1016/j.mssp.2011.02.017

    Article  Google Scholar 

  19. Yakuphanoglu, F.: Transparent metal oxide films based sensors for solar tracking applications. Compos. Part B Eng. 92, 151–159 (2016). https://doi.org/10.1016/j.compositesb.2016.02.039

    Article  Google Scholar 

  20. Rajput, J.K., Pathak, T.K., Kumar, V., Purohit, L.P.: Influence of sol concentration on CdO nanostructure with gas sensing application. Appl. Surf. Sci. 409, 8–16 (2017). https://doi.org/10.1016/J.APSUSC.2017.03.019

    Article  ADS  Google Scholar 

  21. Walsh, M.J., Yoshida, K., Kuwabara, A., Pay, M.L., Gai, P.L., Boyes, E.D.: On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles. Nano Lett. 12, 2027–2031 (2012). https://doi.org/10.1021/nl300067q

    Article  ADS  Google Scholar 

  22. Chen, M., Kang, H., Gong, Y., Guo, J., Zhang, H., Liu, R.: Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl. Mater. Interfaces. 7, 21717–21726 (2015). https://doi.org/10.1021/acsami.5b07150

    Article  Google Scholar 

  23. Sun, X., Frey Huls, N., Sigdel, A., Sun, S.: Tuning exchange bias in Core/Shell FeO/Fe3O4 nanoparticles. Nano Lett. 12, 246–251 (2012). https://doi.org/10.1021/nl2034514

    Article  ADS  Google Scholar 

  24. Liu, H., Sun, K., Zhao, J., Guo, R., Shen, M., Cao, X.: Dendrimer-mediated synthesis and shape evolution of gold–silver alloy nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 22–29 (2012)

  25. Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C. 114, 21390–21396 (2010). https://doi.org/10.1021/jp104660a

    Article  Google Scholar 

  26. Zhang, L., Xue, D., Gao, C.: Anomalous magnetic properties of antiferromagnetic CoO nanoparticles. J. Magn. Magn. Mater. 267, 111–114 (2003). https://doi.org/10.1016/S0304-8853(03)00343-3

    Article  ADS  Google Scholar 

  27. Ghosh, M., Sampathkumaran, E.V., Rao, C.N.R.: Synthesis and magnetic properties of CoO nanoparticles. Chem. Mater. 17, 2348–2352 (2005). https://doi.org/10.1021/cm0478475

    Article  Google Scholar 

  28. Djabri, A., Mahdi, M., Boukhalfa, R., Erkovan, M., Chumakov, Y., Chemam, F.: Structural, magnetic, and magneto-optical properties of Fe/cu superlattices. J. Supercond. Nov. Magn. 30, 3207–3214 (2017). https://doi.org/10.1007/s10948-017-4128-z

    Article  Google Scholar 

  29. Değer, C., Aköz, M.E., Erkovan, M., Yıldız, F.: Investigation on magnetic properties of soft/hard magnetic bilayers at different temperatures: a Monte-Carlo study. Acta Phys. Pol. A. 129, 869–871 (2016). https://doi.org/10.12693/APhysPolA.129.869

    Article  Google Scholar 

  30. Wang, Y., Wei, W., Li, F., Huang, B., Dai, Y.: Janus Bi2XYZ monolayers for light harvesting and energy conversion from first-principles calculations. Phys. E Low-Dimensional Syst. Nanostructures. 117, 113823 (2020). https://doi.org/10.1016/j.physe.2019.113823

    Article  Google Scholar 

  31. Chao, J., Xing, S., Liu, Z., Zhang, X., Zhao, Y., Zhao, L., Fan, Q.: Large-scale synthesis of Bi2S3 nanorods and nanoflowers for flexible near-infrared laser detectors and visible light photodetectors. Mater. Res. Bull. 98, 194–199 (2018). https://doi.org/10.1016/j.materresbull.2017.10.026

    Article  Google Scholar 

  32. Torrisi, L., Silipigni, L., Restuccia, N., Cuzzocrea, S., Cutroneo, M., Barreca, F., Fazio, B., Di Marco, G., Guglielmino, S.: Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids. 119, 62–70 (2018). https://doi.org/10.1016/J.JPCS.2018.03.034

    Article  ADS  Google Scholar 

  33. Kinsella, J.M., Jimenez, R.E., Karmali, P.P., Rush, A.M., Kotamraju, V.R., Gianneschi, N.C., Ruoslahti, E., Stupack, D., Sailor, M.J.: X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. 50, 12308–12311 (2011). https://doi.org/10.1002/anie.201104507

    Article  Google Scholar 

  34. Liu, J., Zheng, X., Yan, L., Zhou, L., Tian, G., Yin, W., Wang, L., Liu, Y., Hu, Z., Gu, Z., Chen, C., Zhao, Y.: Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano. 9, 696–707 (2015). https://doi.org/10.1021/nn506137n

    Article  Google Scholar 

  35. Zhu, X., Zhou, J., Chen, M., Shi, M., Feng, W., Li, F.: Core–shell Fe3O4@ NaLuF4: Yb, Er/tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials. 18, 4618–4627 (2012)

    Article  Google Scholar 

  36. Fattahi, H., Arsalani, N., Nazarpoor, M.: Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett. 4, 329–338 (2010). https://doi.org/10.3144/expresspolymlett.2010.42

    Article  Google Scholar 

  37. Ninjbadgar, T., Brougham, D.F.: Epoxy ring opening phase transfer as a general route to water dispersible superparamagnetic Fe3O4 nanoparticles and their application as positive MRI contrast agents. Adv. Funct. Mater. 21, 4769–4775 (2011). https://doi.org/10.1002/adfm.201101371

    Article  Google Scholar 

  38. Zeng, J., Jing, L., Hou, Y., Jiao, M., Qiao, R., Jia, Q., Liu, C., Fang, F., Lei, H., Gao, M.: Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv. Mater. 26, 2694–2698 (2014). https://doi.org/10.1002/adma.201304744

    Article  ADS  Google Scholar 

  39. Aktaş, S., Thornton, S.C., Binns, C., Lari, L., Pratt, A., Kröger, R., Horsfield, M.A.: Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Mater. Res. Express. 2, (2015). https://doi.org/10.1088/2053-1591/2/3/035002

  40. Aktas, S., Thornton, S.C., Binns, C., Denby, P.: Gas phase synthesis of core-shell Fe@FeOx magnetic nanoparticles into fluids. J. Nanopart. Res. 18, (2016). https://doi.org/10.1007/s11051-016-3659-8

  41. Binns, C., Prieto, P., Baker, S., Howes, P., Dondi, R., Burley, G., Lari, L., Kröger, R., Pratt, A., Aktas, S., Mellon, J.K.: Preparation of hydrosol suspensions of elemental and core-shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions. J. Nanopart. Res. 14, (2012). https://doi.org/10.1007/s11051-012-1136-6

  42. Feng, W., Zhou, X., Nie, W., Chen, L., Qiu, K., Zhang, Y., He, C.: Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an n vitro study. ACS Appl. Mater. Interfaces. 7, 4354–4367 (2015). https://doi.org/10.1021/am508837v

    Article  Google Scholar 

  43. Kolen’ko, Y.V., Bañobre-López, M., Rodríguez-Abreu, C., Carbó-Argibay, E., Sailsman, A., Piñeiro-Redondo, Y., Cerqueira, M.F., Petrovykh, D.Y., Kovnir, K., Lebedev, O.I., Rivas, J.: Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J. Phys. Chem. C. 118, 8691–8701 (2014). https://doi.org/10.1021/jp500816u

    Article  Google Scholar 

  44. Barick, K.C., Singh, S., Bahadur, D., Lawande, M.A., Patkar, D.P., Hassan, P.A.: Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J. Colloid Interface Sci. 418, 120–125 (2014). https://doi.org/10.1016/j.jcis.2013.11.076

    Article  ADS  Google Scholar 

  45. Tran, L.D., Hoang, N.M.T., Mai, T.T., Tran, H.V., Nguyen, N.T., Tran, T.D., Do, M.H., Nguyen, Q.T., Pham, D.G., Ha, T.P., Van Le, H., Nguyen, P.X.: Nanosized magnetofluorescent Fe3O4-curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf. A Physicochem. Eng. Asp. 371, 104–112 (2010). https://doi.org/10.1016/j.colsurfa.2010.09.011

    Article  Google Scholar 

  46. Lei, W., Liu, Y., Si, X., Xu, J., Du, W., Yang, J., Zhou, T., Lin, J.: Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route, vol. 381, p. 314 (2017)

    Google Scholar 

  47. Tang, C., Wang, C., Su, F., Zang, C., Yang, Y., Zong, Z., Zhang, Y.: Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sci. 12, 1352–1356 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.05.007

    Article  ADS  Google Scholar 

  48. Sharma, S., Kumar, D., Khare, N.: Plasmonic Ag nanoparticles decorated Bi 2 S 3 nanorods and nanoflowers: their comparative assessment for photoelectrochemical water splitting. Int. J. Hydrog. Energy. 44, 3538–3552 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.238

    Article  Google Scholar 

  49. Zhu, H., Jiang, R., Li, J., Fu, Y., Jiang, S., Yao, J.: Magnetically recyclable Fe3O4/Bi2S3 microspheres for effective removal of Congo red dye by simultaneous adsorption and photocatalytic regeneration. Sep. Purif. Technol. 179, 184–193 (2017). https://doi.org/10.1016/j.seppur.2016.12.051

    Article  Google Scholar 

  50. Hong, R.Y., Zhang, S.Z., Di, G.Q., Li, H.Z., Zheng, Y., Ding, J., Wei, D.G.: Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 43, 2457–2468 (2008). https://doi.org/10.1016/j.materresbull.2007.07.035

    Article  Google Scholar 

  51. Qu, F., Wang, Y., Liu, J., Wen, S., Chen, Y., Ruan, S.: Fe3O4-NiO core-shell composites: hydrothermal synthesis and toluene sensing properties. Mater. Lett. 132, 167–170 (2014). https://doi.org/10.1016/j.matlet.2014.06.060

    Article  Google Scholar 

  52. Sharma, S., Khare, N.: Hierarchical Bi2S3 nanoflowers: a novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv. Powder Technol. 29, 3336–3347 (2018). https://doi.org/10.1016/j.apt.2018.09.012

    Article  Google Scholar 

  53. Prozorov, T., Kataby, G., Prozorov, R., Gedanken, A.: Effect of surfactant concentration on the size of coated ferromagnetic nanoparticles. Thin Solid Films. 340, 189–193 (1999). https://doi.org/10.1016/S0040-6090(98)01400-X

    Article  ADS  Google Scholar 

  54. Reddy, K.R., Lee, K.P., Gopalan, A.I.: Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J. Appl. Polym. Sci. 106, 1181–1191 (2007). https://doi.org/10.1002/app.26601

    Article  Google Scholar 

  55. Dutz, S., Hergt, R., Mürbe, J., Müller, R., Zeisberger, M., Andrä, W., Töpfer, J., Bellemann, M.E.: Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J. Magn. Magn. Mater. 308, 305–312 (2007). https://doi.org/10.1016/j.jmmm.2006.06.005

    Article  ADS  Google Scholar 

  56. Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012). https://doi.org/10.1021/jp3014749

    Article  Google Scholar 

  57. Keng, P.Y., Bull, M.M., Shim, I.B., Nebesny, K.G., Armstrong, N.R., Sung, Y., Char, K., Pyun, J.: Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires. Chem. Mater. 23, 1120–1129 (2011). https://doi.org/10.1021/cm102319d

    Article  Google Scholar 

Download references

Funding

This work was supported by the Kırklareli University Research Fund (project number: KLUBAP-179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mümin Mehmet Koç.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaçam, R., Yetim, N.K. & Koç, M.M. Structural and Magnetic Investigation of Bi2S3@Fe3O4 Nanocomposites for Medical Applications. J Supercond Nov Magn 33, 2715–2725 (2020). https://doi.org/10.1007/s10948-020-05518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05518-x

Keywords

Navigation