Skip to main content
Log in

Ultrasound-Assisted Synthesis and Tuning the Magnetic and Structural Features of Superparamagnetic Fe3O4 Nanoparticles by Using Ethylenediamine as a Precipitating Agent

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Due to the strong effect of nanoparticles’ size on the magnetic and structural properties of Fe3O4 (magnetite) nanoparticles, the size selection proportional to desired magnetization especially superparamagnetic characteristic of these particles is very important. In this work, at first, the Fe3O4 nanoparticles successfully synthesized by a novel precipitating agent, ethylenediamine (EN), with an ultrasonic treatment (40 kHz, 150 W) by the co-precipitation method. Then, in order to accurately investigate the synthesis conditions on the physical properties of Fe3O4, the influence of reaction temperature, reaction time, and precipitating agent are studied. The structural and magnetic properties of the as-prepared nanoparticles are characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analysis. It is found that the EN produces magnetite nanoparticles with a larger size and desired saturation magnetization (Ms). The absence of impurity phases in all of the synthesized nanoparticles and formation of the spinel structures at low temperature (30 °C) can be due to the influence of the ultrasound waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ding, C., et al.: Controllable synthesis of Fe3O4 polyhedron possessing excellent high-rate electrochemical performance for lithium-ion batteries. Mater. Res. Bull. 97, 142–149 (2018)

    Article  Google Scholar 

  2. Singh, P., Upadhyay, C.: Role of silver nanoshells on structural and magnetic behavior of Fe3O4 nanoparticles. J. Magn. Magn. Mater. 458, 39–47 (2018)

    Article  ADS  Google Scholar 

  3. Khmelinskii, I., Makarov, V.: EPR hyperthermia of S. cerevisiae using superparamagnetic Fe3O4 nanoparticles. J. Therm. Biol. 77, 55–61 (2018)

    Article  Google Scholar 

  4. Aghazadeh, M., Karimzadeh, I., Ganjali, M.R., Morad, M.M.: A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater. Lett. 196, 392–395 (2017)

    Article  Google Scholar 

  5. Abazari, R., et al.: The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@ bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions. Ultrason. Sonochem. 43, 248–261 (2018)

    Article  Google Scholar 

  6. Sriram, B., Govindasamy, M., Wang, S.-F., Ramalingam, R.J., Al-lohedan, H., Maiyalagan, T.: Novel sonochemical synthesis of Fe3O4 nanospheres decorated on highly active reduced graphene oxide nanosheets for high sensitive detection of uric acid in biological samples. Ultrasonics Sonochem. 104618 (2019)

  7. Hashemi, H., Namazi, H.: Sonochemically synthesized blue fluorescent functionalized graphene oxide as a drug delivery system. Ultrason. Sonochem. 42, 124–133 (2018)

    Article  Google Scholar 

  8. Sanaeifar, N., Rabiee, M., Abdolrahim, M., Tahriri, M., Vashaee, D., Tayebi, L.: A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 519, 19–26 (2017)

    Article  Google Scholar 

  9. Boustani, K., Shayesteh, S.F., Salouti, M., Jafari, A., Shal, A.A.: Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: carbon-, dextran-, SiO2-and ZnO-coated Fe3O4 nanoparticles. IET Nanobiotechnol. 12(1), 78–86 (2017)

    Article  Google Scholar 

  10. Ganesan, V., Lahiri, B., Louis, C., Philip, J., Damodaran, S.P.: Size-controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field. J. Mol. Liq. 281, 315–323 (2019)

    Article  Google Scholar 

  11. Mascolo, M., Pei, Y., Ring, T.: Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials. 6(12), 5549–5567 (2013)

    Article  ADS  Google Scholar 

  12. Snoussi, Y., Bastide, S., Abderrabba, M., Chehimi, M.M.: Sonochemical synthesis of Fe3O4@ NH2-mesoporous silica@ Polypyrrole/Pd: a core/double shell nanocomposite for catalytic applications. Ultrason. Sonochem. 41, 551–561 (2018)

    Article  Google Scholar 

  13. Zhang, X., Zhou, R., Rao, W.: S. P. C. Shanghai 201800 PR China, and S. P. Shanghai 201800 PR C, Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation. J. Radioanal. Nucl. Chem. 270(2), 285–289 (2006)

    Article  Google Scholar 

  14. Peternele, W.S., et al.: Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties. J. Nanomater. 2014, 94 (2014)

    Article  Google Scholar 

  15. Wu, X., Xu, G., Zhu, J.-J.: Sonochemical synthesis of Fe3O4/carbon nanotubes using low frequency ultrasonic devices and their performance for heterogeneous sono-persulfate process on inactivation of Microcystis aeruginosa. Ultrasonics Sonochemistry. 104634 (2019)

  16. Balachandramohan, J., Anandan, S., Sivasankar, T.: A simple approach for the sonochemical synthesis of Fe3O4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. Ultrason. Sonochem. 40, 1–10 (2018)

    Article  Google Scholar 

  17. W. k., L. D., L. W., and Z. K: One-pot sonochemical synthesis of magnetite@ reduced graphene oxide nanocomposite for high performance Li ion storage. Ultrasonics Sonochem. 45, 167–172 (2018)

    Article  Google Scholar 

  18. Almessiere, M., et al.: Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrason. Sonochem. 54, 1–10 (2019)

    Article  Google Scholar 

  19. Almessiere, M., et al.: Structural, magnetic, optical properties and cation distribution of nanosized Co0. 7Zn0. 3TmxFe2-xO4 (0.0≤ x≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochem. 104638 (2019)

  20. Almessiere, M., et al.: Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrasonics Sonochem. 104621 (2019)

  21. Wei, R., Lv, X., Yang, M., Xu, J., You, Z.: Improving the property of calcium ferrite using a sonochemical method. Ultrason. Sonochem. 43, 110–113 (2018)

    Article  Google Scholar 

  22. Mahdiani, M., Soofivand, F., Salavati-Niasari, M.: Investigation of experimental and instrumental parameters on properties of PbFe12O19 nanostructures prepared by sonochemical method. Ultrason. Sonochem. 40, 271–281 (2018)

    Article  Google Scholar 

  23. Abbas, M., et al.: Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceram. Int. 40(2), 3269–3276 (2014)

    Article  Google Scholar 

  24. Mirzaee, S., Shayesteh, S.F.: Ultrasound induced strain in ultrasmall CoFe2O4@ polyvinyl alcohol nanocomposites. Ultrason. Sonochem. 40, 583–586 (2018)

    Article  Google Scholar 

  25. Zinatloo-Ajabshir, S., Salavati-Niasari, M.: Novel poly (ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram. Int. 41(1), 567–575 (2015)

    Article  Google Scholar 

  26. Jafari, A., Boustani, K., Shayesteh, S.F.: Effect of carbon shell on the structural and magnetic properties of Fe 3 O 4 superparamagnetic nanoparticles. J. Supercond. Nov. Magn. 27(1), 187–194 (2014)

    Article  Google Scholar 

  27. Jafari, A., Shayesteh, S.F., Salouti, M., Boustani, K.: Dependence of structural phase transition and lattice strain of Fe3O4 nanoparticles on calcination temperature. Indian J. Phys. 89(6), 551–560 (2015)

    Article  ADS  Google Scholar 

  28. Nirouei, M., Jafari, A., Boustani, K.: Magnetic and structural study of FeNi 3 nanoparticles: effect of calcination temperature. J. Supercond. Nov. Magn. 27(12), 2803–2811 (2014)

    Article  Google Scholar 

  29. Ahmad, S., Riaz, U., Kaushik, A., Alam, J.: Soft template synthesis of super paramagnetic Fe 3 O 4 nanoparticles a novel technique. J. Inorg. Organomet. Polym. Mater. 19(3), 355–360 (2009)

    Article  Google Scholar 

  30. Kalyani, S., Sangeetha, J., Philip, J.: Effect of precipitating agent and solvent polarity on the size and magnetic properties of magnetite nanoparticles prepared by microwave assisted synthesis. J. Nanosci. Nanotechnol. 16(9), 9591–9602 (2016)

    Article  Google Scholar 

  31. Zhang, D., Zheng, J., Tong, Z.: Fabrication and characterisation of Fe3O4 nanowires via an ethylenediamine-assisted route. J. Exp. Nanosci. 5(2), 162–168 (2010)

    Article  Google Scholar 

  32. Ayyappan, S., et al.: Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J. Appl. Phys. 109(8), 084303 (2011)

    Article  ADS  Google Scholar 

  33. Millan, A., et al.: Surface effects in maghemite nanoparticles. J. Magn. Magn. Mater. 312(1), L5–L9 (2007)

    Article  Google Scholar 

  34. Kirillov, V., et al.: Dimethylsulfoxide as a media for one-stage synthesis of the Fe3O4-based ferrofluids with a controllable size distribution. Mater. Chem. Phys. 225, 292–297 (2019)

    Article  Google Scholar 

  35. Feng, J., Mao, J., Wen, X., Tu, M.: Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J. Alloys Compd. 509(37), 9093–9097 (2011)

    Article  Google Scholar 

  36. Wu, J.-H., Ko, S.P., Liu, H.-L., Kim, S., Ju, J.-S., Kim, Y.K.: Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater. Lett. 61(14–15), 3124–3129 (2007)

    Article  Google Scholar 

  37. Lin, C.-C., Ho, J.-M., Wu, M.-S.: Continuous preparation of Fe3O4 nanoparticles using a rotating packed bed: dependence of size and magnetic property on temperature. Powder Technol. 274, 441–445 (2015)

    Article  Google Scholar 

  38. Oh, J.-M., Hwang, S.-H., Choy, J.-H.: The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics. 151(1–4), 285–291 (2002)

    Article  Google Scholar 

  39. Lee, J., Isobe, T., Senna, M.: Preparation of ultrafine Fe3O4Particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 177(2), 490–494 (1996)

    Article  ADS  Google Scholar 

  40. Hesani, M., Yazdani, A., Ravan, B.A., Ghazanfari, M.: The effect of particle size on the characteristics of FeCo nanoparticles. Solid State Commun. 150(13–14), 594–597 (2010)

    Article  ADS  Google Scholar 

  41. Šutka, A., et al.: Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures. Mater. Chem. Phys. 149, 473–479 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Guilan for financial and facility support.

Funding

This work is financially supported by the University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komail Boustani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boustani, K., Shokri, A., Shayesteh, S.F. et al. Ultrasound-Assisted Synthesis and Tuning the Magnetic and Structural Features of Superparamagnetic Fe3O4 Nanoparticles by Using Ethylenediamine as a Precipitating Agent. J Supercond Nov Magn 33, 1879–1887 (2020). https://doi.org/10.1007/s10948-020-05436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05436-y

Keywords

Navigation