Skip to main content

Advertisement

Log in

Recent advances and developments in advanced green porous nanomaterial for sustainable energy storage application

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Compared with traditional battery and super capacitor materials, nanomaterials can significantly improve ion transport and electron conductivity. There are many features to the achievement of nanomaterials in energy storage applications. Nanomaterials development and their related processes can improve the performance based on the energy storage existing system. Current study discuss fruitful approaches and outline a roadmap for using green nanomaterials for advancement in energy storage devise. This review includes the information of the latest research being carried out on green nanomaterials and its sustainability. It also provides an overview of the latest state and proposes the future direction of the use of green nanomaterials for numerous possible applications, which are mainly used in the fields of biotechnology, agriculture, and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.C. Roco, R.S. Williams, P. Alivisatos, Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology in the next Decade (Springer, Dordrecht, 2000)

    Book  Google Scholar 

  2. R. Ravichandran, Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int. J. Green Nanotechnol.: Phys. Chem. 1(2), P72–P96 (2010)

    Article  Google Scholar 

  3. A. Arnall, D. Parr, Moving the nanoscience and technology (NST) debate forwards: short-term impacts, long-term uncertainty and the social constitution. Technol. Soc. 27(1), 23–38 (2005)

    Article  Google Scholar 

  4. S. Kalia, B. Kaith, I. Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology (Springer, Berlin, 2011)

    Book  Google Scholar 

  5. V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis. Green Chem. 12(5), 743–754 (2010)

    Article  CAS  Google Scholar 

  6. M.A. Albrecht, C.W. Evans, C.L. Raston, Green chemistry and the health implications of nanoparticles. Green Chem. 8(5), 417–432 (2006)

    Article  CAS  Google Scholar 

  7. G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Lu, S. Ozcan, Green nanomaterials: on track for a sustainable future. Nano Today 10(4), 417–420 (2015)

    Article  CAS  Google Scholar 

  9. D.A. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196(11), 4873–4885 (2011)

    Article  CAS  Google Scholar 

  10. A. Mamalis, Recent advances in nanotechnology. J. Mater. Process. Technol. 181(1–3), 52–58 (2007)

    Article  CAS  Google Scholar 

  11. M.J. Mulvihill et al., Green chemistry and green engineering: a framework for sustainable technology development. Annu. Rev. Environ. Resour. 36, 271–293 (2011)

    Article  Google Scholar 

  12. J.E. Hutchison, Greener Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology (ACS Publications, Washington, D.C., 2008)

    Google Scholar 

  13. K. Schmidt, Green Nanotechnology: It's Easier Than You Think. (2007). http://eprints.internano.org/68/

  14. P.T. Anastas, T.C. Williamson (Eds.), Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes (Oxford University Press, 1998)

  15. R.S. Varma, Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 16(4), 2027–2041 (2014)

    Article  CAS  Google Scholar 

  16. R.S. Varma, Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 1(2), 123–128 (2012)

    Article  CAS  Google Scholar 

  17. M.-M. Titirici et al., Sustainable carbon materials. Chem. Soc. Rev. 44(1), 250–290 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. R.J. Moon et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. M.N. Nadagouda, R.S. Varma, Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8(9), 2762–2767 (2007)

    Article  CAS  Google Scholar 

  20. Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. J.T. Korhonen et al., Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5(3), 1967–1974 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. X. Wang et al., Cellulose-based nanomaterials for energy applications. Small 13(42), 1702240 (2017)

    Article  CAS  Google Scholar 

  23. M. Muqeet et al., Insight into cellulose-based-nanomaterials-A pursuit of environmental remedies. Int J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.050

    Article  PubMed  Google Scholar 

  24. D. Wang, A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26(2), 687–701 (2019)

    Article  CAS  Google Scholar 

  25. A. Sheikhi, Emerging cellulose-based nanomaterials and nanocomposites, in Nanomaterials and polymer nanocomposites. (Elsevier, Amsterdam, 2019), pp. 307–351

    Google Scholar 

  26. D. Ponnamma et al., Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polym.-Plast. Technol. Mater. 59(1), 1–62 (2020)

    CAS  Google Scholar 

  27. K.K. Sadasivuni et al., A review on porous polymer composite materials for multifunctional electronic applications. Polym.-Plast. Technol. Mater. 58(12), 1253–1294 (2019)

    CAS  Google Scholar 

  28. Z. Sui et al., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22(18), 8767–8771 (2012)

    Article  CAS  Google Scholar 

  29. M.N. Nadagouda, T.F. Speth, R.S. Varma, Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 44(7), 469–478 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. B.P. Vinayan, R. Nagar, S. Ramaprabhu, Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J. Mater. Chem. A 1(37), 11192–11199 (2013)

    Article  CAS  Google Scholar 

  31. R. Abdelaziz et al., Green chemistry and nanofabrication in a levitated leidenfrost drop. Nat. Commun. 4, 2400 (2013)

    Article  PubMed  CAS  Google Scholar 

  32. B.J. Deadman et al., A prototype device for evaporation in batch and flow chemical processes. Green Chem. 15(8), 2050–2055 (2013)

    Article  CAS  Google Scholar 

  33. X. Qian et al., Multiwall carbon nanotube@ mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. J. Mater. Chem. 21(34), 13025–13031 (2011)

    Article  CAS  Google Scholar 

  34. Q. Xie et al., Core-shell N-doped active carbon fiber@ graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J. Power Sources 317, 133–142 (2016)

    Article  CAS  Google Scholar 

  35. X. Zhang et al., Fabrication of graphene and core–shell activated porous carbon-coated carbon nanotube hybrids with excellent electrochemical performance for supercapacitors. Int. J. Hydrog. Energy 41(15), 6394–6402 (2016)

    Article  CAS  Google Scholar 

  36. Y. Wang et al., Sea urchin-like core/shell hierarchical porous carbon for supercapacitors. J. Alloys Compd. 719, 438–445 (2017)

    Article  CAS  Google Scholar 

  37. R. Yuksel et al., Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors. J. Power Sources 328, 167–173 (2016)

    Article  CAS  Google Scholar 

  38. B. Zhao et al., Hollow SnO2@Co3O4 core–shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J. Power Sources 298, 83–91 (2015)

    Article  CAS  Google Scholar 

  39. L.-Y. Lin et al., A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J. Mater. Chem. A 1(37), 11237–11245 (2013)

    Article  CAS  Google Scholar 

  40. J. Wang et al., 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19, 222–233 (2016)

    Article  CAS  Google Scholar 

  41. J. Sun et al., 3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors. Nano Energy 4, 56–64 (2014)

    Article  CAS  Google Scholar 

  42. D. Zhang et al., Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors. Nano Energy 13, 47–57 (2015)

    Article  CAS  Google Scholar 

  43. Z. Gu, X. Zhang, NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. J. Mater. Chem. A 4(21), 8249–8254 (2016)

    Article  CAS  Google Scholar 

  44. W. Kong et al., Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 3(23), 12452–12460 (2015)

    Article  CAS  Google Scholar 

  45. R. Li et al., NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 312, 156–164 (2016)

    Article  CAS  Google Scholar 

  46. W. He et al., Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)

    Article  CAS  Google Scholar 

  47. X.-F. Lu et al., α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(27), 14843–14850 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. A.V. Radhamani, K.M. Shareef, M.S.R. Rao, ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8(44), 30531–30542 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. X. Wang et al., Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core–shell nanostructure and porous carbon. J. Mater. Chem. A 4(46), 18181–18187 (2016)

    Article  CAS  Google Scholar 

  50. M.-J. Deng et al., Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy Environ. Sci. 6(7), 2178–2185 (2013)

    Article  CAS  Google Scholar 

  51. X. Tang et al., Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(49), 27518–27525 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. H. Chen et al., Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Article  CAS  Google Scholar 

  53. P. Thounthong et al., Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans. Veh. Technol. 58(8), 3892–3904 (2009)

    Article  Google Scholar 

  54. M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75, 1187–1197 (2017)

    Article  Google Scholar 

  55. M.U. Mutarraf et al., Energy storage systems for shipboard microgrids—a review. Energies 11(12), 3492 (2018)

    Article  Google Scholar 

  56. Y. Fu et al., Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Appl. Surf. Sci. 317, 84–89 (2014)

    Article  CAS  Google Scholar 

  57. A.D. Sekar et al., Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 172, 173–180 (2019)

    Article  CAS  Google Scholar 

  58. X. Wu et al., Effect of zeolite-coated anode on the performance of microbial fuel cells. J. Chem. Technol. Biotechnol. 90(1), 87–92 (2015)

    Article  CAS  Google Scholar 

  59. A. Mehdinia, E. Ziaei, A. Jabbari, Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim. Acta 130, 512–518 (2014)

    Article  CAS  Google Scholar 

  60. Y. Qiao et al., A hierarchical porous graphene/nickel anode that simultaneously boosts the bio-and electro-catalysis for high-performance microbial fuel cells. RSC Adv. 4(42), 21788–21793 (2014)

    Article  CAS  Google Scholar 

  61. Y. Qiao, X.-S. Wu, C.M. Li, Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. J. Power Sources 266, 226–231 (2014)

    Article  CAS  Google Scholar 

  62. I.H. Park et al., Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens. Bioelectron. 58, 75–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. Z. Lv et al., Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J. Power Sources 210, 26–31 (2012)

    Article  CAS  Google Scholar 

  64. Y. Chen et al., Enhanced performance of microbial fuel cells by using MnO2/halloysite nanotubes to modify carbon cloth anodes. Energy 109, 620–628 (2016)

    Article  CAS  Google Scholar 

  65. A. Mehdinia, E. Ziaei, A. Jabbari, Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int. J. Hydrog. Energy 39(20), 10724–10730 (2014)

    Article  CAS  Google Scholar 

  66. P.K. Nayak et al., Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4(4), 269 (2019)

    Article  CAS  Google Scholar 

  67. S. Kumar et al., Quantum-sized nanomaterials for solar cell applications. Renew. Sustain. Energy Rev. 73, 821–839 (2017)

    Article  CAS  Google Scholar 

  68. A. Şenocak et al., Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials. Dalton Trans. 47(29), 9617–9626 (2018)

    Article  PubMed  Google Scholar 

  69. C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 317, 120–132 (2016)

    Article  CAS  Google Scholar 

  70. S. Kanmani, N. Rajamanickam, K. Ramachandran, Comparison of Eosin yellowish dye–sensitized and CdS-sensitized TiO2 nanomaterial–based solid-state solar cells. J. Solid State Electrochem. (2020). https://doi.org/10.1007/s10008-020-04741-9

    Article  Google Scholar 

  71. U. Kumar et al., Carbon nanotube: synthesis and application in solar cell. J. Inorg. Organomet Polym. Mater. 26(6), 1231–1242 (2016)

    Article  CAS  Google Scholar 

  72. J. Qi et al., Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. ACS Nano 5(9), 7108–7116 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. C.K. Lim, Y. Wang, L. Zhang, Facile formation of a hierarchical TiO2–SnO2 nanocomposite architecture for efficient dye-sensitized solar cells. RSC Adv. 6(30), 25114–25122 (2016)

    Article  CAS  Google Scholar 

  74. X. Yu et al., Synergistic assembly of nanoparticle aggregates and texture nanosheets into hierarchical TiO2 core–shell structures for enhanced light harvesting in dye-sensitized solar cells. J. Mater. Chem. A 1(20), 6175–6182 (2013)

    Article  CAS  Google Scholar 

  75. W. Song et al., Novel photoanode for dye-sensitized solar cells with enhanced light-harvesting and electron-collection efficiency. ACS Appl. Mater. Interfaces 8(21), 13418–13425 (2016)

    Article  CAS  PubMed  Google Scholar 

  76. W.-L. Liu et al., The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 5(17), 7953–7962 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. J. Wang et al., Novel triple-layered photoanodes based on TiO2 nanoparticles, TiO2 nanotubes, and β-NaYF4: Er3+, Yb3+@ SiO2@ TiO2 for highly efficient dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 160, 361–371 (2017)

    Article  CAS  Google Scholar 

  78. Z. Zhang et al., A spherical template indenter for a frozen soil long-term shear strength test. Cold Reg. Sci. Technol. 131, 10–15 (2016)

    Article  Google Scholar 

  79. M.K. Gangishetty et al., Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core-shell Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces 5(21), 11044–11051 (2013)

    Article  CAS  PubMed  Google Scholar 

  80. M.D. Brown et al., Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles. Nano Lett. 11(2), 438–445 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. C. Gao et al., A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells. Nanoscale 4(11), 3475–3481 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. B.A. Gonfa et al., Investigation of the plasmonic effect in air-processed PbS/CdS core–shell quantum dot based solar cells. J. Mater. Chem. A 4(34), 13071–13080 (2016)

    Article  CAS  Google Scholar 

  83. X. Song et al., ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot-sensitized solar cells. J. Power Sources 269, 661–670 (2014)

    Article  CAS  Google Scholar 

  84. B.A. Gonfa et al., Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core–shell quantum dots and TiO2 nanorod arrays. Nanoscale 7(22), 10039–10049 (2015)

    Article  CAS  PubMed  Google Scholar 

  85. S. Jiao et al., Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9(1), 908–915 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. M.M. Tavakoli et al., Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119(33), 18886–18895 (2015)

    Article  CAS  Google Scholar 

  87. S.-W. Baek, J.-H. Shim, J.-G. Park, The energy-down-shift effect of Cd0.5Zn0.5S–ZnS core–shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells. Phys. Chem. Chem. Phys. 16(34), 18205–18210 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. G. Jia et al., Multiple core-shell silicon nanowire-based heterojunction solar cells. J. Phys. Chem. C 117(2), 1091–1096 (2013)

    Article  CAS  Google Scholar 

  89. A.S. Togonal et al., Core-shell heterojunction solar cells based on disordered silicon nanowire arrays. J. Phys. Chem. C 120(5), 2962–2972 (2016)

    Article  CAS  Google Scholar 

  90. H. Choi et al., High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control. Nanoscale 7(41), 17473–17481 (2015)

    Article  CAS  PubMed  Google Scholar 

  91. S.-W. Baek et al., Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 8(4), 3302–3312 (2014)

    Article  CAS  PubMed  Google Scholar 

  92. Q. Li et al., Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells. ACS Appl. Mater. Interfaces 6(15), 12798–12807 (2014)

    Article  CAS  PubMed  Google Scholar 

  93. L. Shen et al., General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries. Nano Lett. 12(11), 5673–5678 (2012)

    Article  CAS  PubMed  Google Scholar 

  94. G. Wang et al., Synthesis of LiFePO4@carbon nanotube core–shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes. J. Power Sources 291, 209–214 (2015)

    Article  CAS  Google Scholar 

  95. J. Yang et al., In situ self-catalyzed formation of core–shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. J. Mater. Chem. A 1(25), 7306–7311 (2013)

    Article  CAS  Google Scholar 

  96. W. Duan et al., Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 5(14), 6485–6490 (2013)

    Article  CAS  PubMed  Google Scholar 

  97. F. Pan, W.-L. Wang, Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries. J. Solid State Electrochem. 16(4), 1423–1427 (2012)

    Article  CAS  Google Scholar 

  98. H. Li et al., Improved cycling and high rate performance of core-shell LiFe1/3Mn1/3Co1/3PO4/carbon nanocomposites for lithium-ion batteries: effect of the carbon source. Electrochim. Acta 143, 407–414 (2014)

    Article  CAS  Google Scholar 

  99. N.T. Hieu et al., Electrospun nanofibers with a core–shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes. J. Mater. Chem. A 2(36), 15094–15101 (2014)

    Article  CAS  Google Scholar 

  100. J. Wu et al., A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98, 582–591 (2016)

    Article  CAS  Google Scholar 

  101. G. Jeong et al., Core-shell structured silicon nanoparticles@TiO2–x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8(3), 2977–2985 (2014)

    Article  CAS  PubMed  Google Scholar 

  102. J. Sourice et al., Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries. J. Power Sources 328, 527–535 (2016)

    Article  CAS  Google Scholar 

  103. D.T. Ngo et al., Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries. J. Mater. Chem. A 3(43), 21722–21732 (2015)

    Article  CAS  Google Scholar 

  104. S.-H. Park, W.-J. Lee, Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell–core structure as anodes for lithium ion batteries. Carbon 89, 197–207 (2015)

    Article  CAS  Google Scholar 

  105. Z. Zhang et al., Synthesis of graphene@Fe3O4@C core–shell nanosheets for high-performance lithium ion batteries. J. Mater. Chem. A 3(13), 7036–7043 (2015)

    Article  CAS  Google Scholar 

  106. H. Liu et al., Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon 84, 419–425 (2015)

    Article  CAS  Google Scholar 

  107. S. Wang et al., A peapod-inspired MnO@C core-shell design for lithium ion batteries. J. Power Sources 307, 11–16 (2016)

    Article  CAS  Google Scholar 

  108. C. Bartolucci et al., Green nanomaterials fostering agrifood sustainability. TrAC Trends Anal. Chem. 125, 115840 (2020)

    Article  CAS  Google Scholar 

  109. S.V. Patwardhan, S.S. Staniland, Green Nanomaterials (IOP Publishing, Bristol, 2019)

    Google Scholar 

  110. G. Benelli, Green Synthesis of Nanomaterials (Multidisciplinary Digital Publishing Institute, Basel, 2019)

    Google Scholar 

  111. A. Dufresne, Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos. Trans. R. S. A 376(2112), 20170040 (2018)

    Article  CAS  Google Scholar 

  112. P. Mondal, A. Anweshan, M.K. Purkait, Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259, 127509 (2020)

    Article  CAS  PubMed  Google Scholar 

  113. M. Kawamoto, P. He, Y. Ito, Green processing of carbon nanomaterials. Adv. Mater. 29(25), 1602423 (2017)

    Article  CAS  Google Scholar 

  114. M. Chauhan et al., Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ. Res. 168, 85–95 (2019)

    Article  CAS  PubMed  Google Scholar 

  115. Z. Zhu et al., Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH. ACS Appl. Mater. Interfaces 11(27), 24205–24211 (2019)

    Article  CAS  PubMed  Google Scholar 

  116. I. Shaheen et al., Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv. 10(14), 8115–8129 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Sattar Jatoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A., Jatoi, A.S., Mazari, S.A. et al. Recent advances and developments in advanced green porous nanomaterial for sustainable energy storage application. J Porous Mater 28, 1945–1960 (2021). https://doi.org/10.1007/s10934-021-01138-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01138-5

Keywords

Navigation