Skip to main content
Log in

Preparation and catalytic application of sulfonated polyvinyl alcohol-Al-pillared α-zirconium phosphate (SPV-AZP) hybrid material towards synthesis of 4,6-diarylpyrimidin-2(1H)-ones

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, a series of new hybrid catalysts were prepared by dispersing sulfonated polyvinyl alcohol (SPVA) in the porous matrix of Al-pillared α-zirconium phosphate. Initially, the α-zirconium phosphate (ZP) was prepared by reflux method, which was subsequently intercalated with [Al13O4(OH)24(H2O)12]7+ cationic clusters to prepare Al-pillared α-zirconium phosphate (AZP). A significant improvement in interlayer space, surface area and porosity of the parent zirconium phosphate was noticed due to bilayer intercalation of Al137+ species into the interlayer region. The ZP and AZP materials were used as host lattice for dispersion of sulfonated polyvinyl alcohol. The obtained hybrid materials were characterized using XRD, FESEM, HRTEM, TGA-DTA, FTIR, UV–Vis, TPD and XPS analytical techniques. The polymeric species were decorated as crystalline nanoparticles in the periphery of ZP particles, whereas they occurred in a well dispersed in the AZP lattice. TPD study revealed a significant improvement in the number of medium and strong acidic sites after dispersion of the SPVA polymer in the AZP matrix. The hybrid materials were used as efficient heterogeneous catalysts for multicomponent one pot synthesis of 4,6-diarylpyrimidin-2(1H)-ones by condensation of aryl aldehydes, ketones and urea using ethanol as solvent. Structurally diverse diarylpyrimidinones were synthesized in high yield and purity in a short span of time. The enhanced catalytic activity of the hybrid material has been ascribed to the well dispersion of the polymeric species and improved accessibility of the acidic sites due to expanded interlayer space of AZP material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. M. Pica, A. Donnadio, M. Casciola, Coord. Chem. Rev. 374, 218–235 (2018)

    CAS  Google Scholar 

  2. Z. Wang, J.M. Heising, A. Clearfield, J. Am. Chem. Soc. 125, 10375–10383 (2003)

    PubMed  CAS  Google Scholar 

  3. M.J. Climent, A. Corma, S. Iborra, Chem. Rev. 111, 1072–1133 (2011)

    PubMed  CAS  Google Scholar 

  4. G. Nagendrappa, Appl. Clay Sci. 53, 106–138 (2011)

    CAS  Google Scholar 

  5. P. Kar, A. Nayak, Y.P. Bhoi, B.G. Mishra, Microporous Mesoporous Mater. 223, 176–186 (2016)

    CAS  Google Scholar 

  6. S. Pradhan, B.G. Mishra, Mol. Catal. 446, 58–71 (2018)

    CAS  Google Scholar 

  7. H. Xiao, S. Liu, Mater. Des. 155, 19–35 (2018)

    CAS  Google Scholar 

  8. A. Diaz, M.L. Gonzalez, R.J. Perez, A. David, A. Mukherjee, A. Baez, A. Clearfield, J.L. Colon, Nanoscale 5, 11456–11463 (2013)

    PubMed  PubMed Central  CAS  Google Scholar 

  9. W. Ni, D. Li, X. Zhao, W. Ma, K. Kong, Q. Gu, M. Chen, Z. Hou, Catal. Today. 319, 66–75 (2019)

    CAS  Google Scholar 

  10. P. Sreenivasulu, N. Viswanadham, T. Sharma, B. Sreedhar, Chem. Commun. 50, 6232–6235 (2014)

    CAS  Google Scholar 

  11. A. Sinhamahapatra, N. Sutradhar, B. Roy, P. Pal, H.C. Bajaj, A.B. Panda, Appl. Catal. B 103, 378–387 (2011)

    CAS  Google Scholar 

  12. D. Cao, B. Yu, S. Zhang, L. Cui, J. Zhang, W. Cai, Appl. Catal. A 528, 59–66 (2016)

    CAS  Google Scholar 

  13. C. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J.C. Parajo, F. Cavani, A.M.R. Galletti, Appl. Catal. B 206, 364–377 (2017)

    CAS  Google Scholar 

  14. G.S. Rao, S. Hussain, K.V.R. Chary, Mater. Today Proc. 5, 25773–25781 (2018)

    Google Scholar 

  15. A. Clearfield, Z. Wang, J. Chem. Soc. Dalton Trans. 15, 2937–2947 (2002)

  16. S. Chessa, N. J. Clayden, M. Bochmann, J. A. Wright, Chem. Commun. 7, 797–799 (2009)

  17. M. Angeloni, O. Piermatti, F. Pizzo, L. Vaccaro, Eur. J. Org. Chem. 2014, 1716–1726 (2014)

  18. F. Costantino, M. Nocchetti, M. Bastianini, A. Lavacchi, M. Caporali, F. Liguori, A.C.S. Appl, Nano Mater. 1, 1750–1757 (2018)

    CAS  Google Scholar 

  19. J.C. Amicangelo, W.R. Leenstra, Inorg. Chem. 44, 2067–2073 (2005)

    PubMed  CAS  Google Scholar 

  20. Y.P. Zhu, T.Y. Ma, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Inorg. Chem. Front. 1, 360–383 (2014)

    CAS  Google Scholar 

  21. X.Z. Lin, Z.Z. Yang, L.N. He, Z.Y. Yuan, Green Chem. 17, 795–798 (2015)

    CAS  Google Scholar 

  22. J. Wang, R. Wang, H. Zi, H. Wang, Y. Xia, X. Liu, J. Chin. Chem. Soc. 65, 750–759 (2018)

    CAS  Google Scholar 

  23. Y. Zhou, R. Huang, F. Ding, A.D. Brittain, J. Liu, M. Zhang, M. Xiao, Y. Meng, L. Sun, A.C.S. Appl, Mater. Interfaces 6, 7417–7425 (2014)

    CAS  Google Scholar 

  24. J.W. Bae, S.J. Park, M.H. Woo, J.Y. Cheon, K.S. Ha, K.W. Jun, D.H. Lee, H.M. Jung, ChemCatChem 3, 1342–1347 (2011)

    CAS  Google Scholar 

  25. R. Hernandez-Huesca, P. Braos-Garcia, J. Merida-Robles, P. Maireles-Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, Chemosphere 48, 467–474 (2002)

    PubMed  CAS  Google Scholar 

  26. F.J. Perez-Reina, E. Rodrıguez-Castellon, A. Jimenez-Lopez, Langmuir 15, 8421–8428 (1999)

    CAS  Google Scholar 

  27. D.P. Das, K.M. Parida, Catal. Surv. Asia 12, 203–213 (2008)

    CAS  Google Scholar 

  28. J. Merida-Robles, E. Rodrıguez-Castellon, A. Jimenez-Lopez, J. Mol. Catal. A 145, 169–181 (1999)

    CAS  Google Scholar 

  29. R. Hernandez-Huesca, J. Merida-Robles, P. Maireles-Torres, E. Rodrıuez-Castellon, A. Jimenez-Lopez, J. Catal. 203, 122–132 (2001)

    CAS  Google Scholar 

  30. D.B. Plata, A.I. Molina, E.R. Aguado, P.B. Garcia, E.R. Castellon, Dalton Trans. 47, 3047–3058 (2018)

    Google Scholar 

  31. D. Majhi, Y. P. Bhoi, K. Das, S. Pradhan, B. G. Mishra, J. Porous Mater. https://doi.org/10.1007/s10934-019-00741-x (2019)

  32. F. Liu, K. Huang, A. Zheng, F.S. Xiao, S. Dai, ACS Catal. 8, 372–391 (2018)

    CAS  Google Scholar 

  33. J. Safari, S.G. Ravandi, J. Mol. Struct. 1074, 71–78 (2014)

    CAS  Google Scholar 

  34. G. Sabitha, K.B. Reddy, R. Srinivas, J.S. Yadav, Helv. Chim. Acta 88, 2996–2999 (2005)

    CAS  Google Scholar 

  35. B.G. Mishra, D. Kumar, V.S. Rao, Catal. Commun. 7, 457–459 (2006)

    CAS  Google Scholar 

  36. Z. Wang, L. Xu, C. Xi, H. Wang, Tetrahedron Lett. 45, 7951–7953 (2004)

    CAS  Google Scholar 

  37. M.M. Abelman, S.C. Smith, D.R. James, Tetrahedron Lett. 44, 4559–4564 (2003)

    CAS  Google Scholar 

  38. M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, Mol. Divers. 12, 191–196 (2008)

    PubMed  CAS  Google Scholar 

  39. M.M. Heravi, F. Derikvand, L. Ranjbar, F.F. Bamoharram, Synth. Commun. 40, 1256–1263 (2010)

    CAS  Google Scholar 

  40. S.R. Mistry, K.C. Maheria, J. Mol. Catal. A 355, 210–215 (2012)

    CAS  Google Scholar 

  41. J. Safari, S.G. Ravandi, RSC Adv. 4, 11486–11492 (2014)

    CAS  Google Scholar 

  42. J.Y. Bottero, J.M. Cases, F. Flessinger, J.E. Polrier, J. Phys. Chem. 84, 2933–2939 (1980)

    CAS  Google Scholar 

  43. Y. Tang, Y. Ren, X. Shi, Inorg. Chem. 52, 1388–1397 (2013)

    PubMed  CAS  Google Scholar 

  44. D.J. MacLachlan, K.R. Morgan, J. Phys. Chem. 96, 3458–3464 (1992)

    CAS  Google Scholar 

  45. J.M. Merida-Robles, P. Olivera-Pastor, A. Jimenez-Lopez, E. Rodriguez-Castellon, J. Phys. Chem. 100, 14726–14735 (1996)

    CAS  Google Scholar 

  46. K.D. Pont, J.F. Gerard, E. Espuche, Eur. Polym. J. 48, 217–227 (2012)

    Google Scholar 

  47. K. Liu, X. Wang, S. Ding, Y. Li, W. Hua, Y. Yue, Z. Gao, J. Mol. Catal. A 380, 84–89 (2013)

    CAS  Google Scholar 

  48. I.K. Biernacka, A.R. Silva, A.P. Carvalho, J. Pires, C. Freire, J. Mol. Catal. A 278, 82–91 (2007)

    Google Scholar 

  49. X.L. Wei, M. Fahlman, A.J. Epstein, Macromolecules 32, 3114–3117 (1999)

    CAS  Google Scholar 

  50. Y. Wang, D. Wang, M. Tan, B. Jiang, J. Zheng, N. Tsubaki, M. Wu, A.C.S. Appl, Mater. Interfaces 7, 26767–26775 (2015)

    CAS  Google Scholar 

  51. P. Swetha, A.S. Kumar, Electrochim. Acta 98, 54–65 (2013)

    CAS  Google Scholar 

Download references

Acknowledgement

The financial support received from the Board of Research in Nuclear Sciences (BRNS), Mumbai through the Grant No. 37(2)/14/23/2015/BRNS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10934_2019_816_MOESM1_ESM.docx

Supplementary file1 Method of preparation of sulfonated polyvinyl alcohol, TGA-DTA, N2 sorption isotherm, TPD profile, FTIR and UV-Vis-DRS of ZP and AZP materials, Effect of reaction time and temperature on yield of 4,6-diphenylpyrimidin-2(1H)-one are presented. (DOCX 756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, D., Das, K., Bariki, R. et al. Preparation and catalytic application of sulfonated polyvinyl alcohol-Al-pillared α-zirconium phosphate (SPV-AZP) hybrid material towards synthesis of 4,6-diarylpyrimidin-2(1H)-ones. J Porous Mater 27, 355–368 (2020). https://doi.org/10.1007/s10934-019-00816-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00816-9

Keywords

Navigation