Skip to main content
Log in

Sulfamic acid well dispersed in the micropores of Al-pillared α-ZrP as efficient heterogeneous catalyst for synthesis of structurally diverse 1,4-dihydropyridines under mild conditions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, α-zirconium phosphate (α-ZrP) has been prepared via reflux method. The α-ZrP material was pillared with [Al13O4(OH)24(H2O)12]7+ polycations to improve its surface area and thermal stability. The aluminum oxyhydroxy clusters were synthesized by in situ partial base hydrolysis of the aluminum salt precursor using sodium hydroxide as base. The microporous inorganic matrix of Al-pillared α-ZrP (AZP) was used for molecular dispersion of sulfamic acid to prepare novel composite materials. The sulfamic acid modified AZP materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. XRD study indicated an expansion in the interlayer space as a result of bilayer intercalation of Al137+ pillaring species. The pillared interlayer space is retained in the composite material. FTIR study indicated the structural integrity of the sulfamic acid. The composite materials exhibited enhanced microporosity with surface area and pore volume in the range 80–120 m2/g and 0.1–0.2 cc/g. FESEM and HRTEM studies indicated morphological reorganization of α-ZrP particles as a result of pillaring and subsequent dispersion of sulfamic acid. Elemental mapping study suggested well dispersion of the sulfamic acid in the composite material without any sign of local agglomeration. The catalytic activity of sulfamic acid loaded AZP materials has been evaluated for the synthesis of 1,4-dihydropyridines by multi component condensation reaction of ethyl acetoacetate, arylaldehydes/chalones and ammonium acetate. The composite materials were highly active for synthesis of structurally diverse 1,4-dihydropyridines in high yield and purity under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.M.A. Parlett, K. Wilson, A.F. Lee, Chem. Soc. Rev. 42, 3876–3893 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. M. Moliner, C. Martinez, A. Corma, Chem. Mater. 26, 246–258 (2014)

    Article  CAS  Google Scholar 

  3. V. Blay, B. Louis, R. Miravalles, T. Yokoi, K.A. Peccatiello, M. Clough, B. Yilmaz, ACS Catal. 7, 6542–6566 (2017)

    Article  CAS  Google Scholar 

  4. K. Ariga, Q. Ji, M.J. McShane, Y.M. Lvov, A. Vinu, J.P. Hill, Chem. Mater. 24, 728–737 (2012)

    Article  CAS  Google Scholar 

  5. G. Alberti, M. Casciola, U. Costantino, R. Vivani, Adv. Mater. 8, 291–303 (1996)

    Article  CAS  Google Scholar 

  6. Y. Tang, Y. Ren, X. Shi, Inorg. Chem. 52, 1388–1397 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. F. Zhang, Y. Xie, W. Lu, X. Wang, S. Xu, X. Lei, J. Coll. Interf. Sci. 349, 571–577 (2010)

    Article  CAS  Google Scholar 

  8. S. Pradhan, B.G. Mishra, Mol. Catal. 446, 58–71 (2018)

    Article  CAS  Google Scholar 

  9. Y. Zhou, R. Huang, F. Ding, A.D. Brittain, J. Liu, M. Zhang, M. Xiao, Y. Meng, L. Sun, ACS Appl. Mater. Interface 6, 7417–7425 (2014)

    Article  CAS  Google Scholar 

  10. D. Ballesteros-Plata, A. Infantes-Molina, E. Rodriguez-Aguado, P. Braos-Garcia, E. Rodriguez-Castellon, Dalton Trans. 47, 3047–3058 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. J.W. Bae, S.-J. Park, M.H. Woo, J.Y. Cheon, K.-S. Ha, K.-W. Jun, D.-H. Lee, H.M. Jung, ChemCatChem 3, 1342–1347 (2011)

    Article  CAS  Google Scholar 

  12. R. Hernandez-Huesca, P. Braos-Garcia, J. Merida-Robles, P. Maireles-Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, Chemosphere 48, 467–474 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. F.J. Perez-Reina, E. Rodrıguez-Castellon, A. Jimenez-Lopez, Langmuir 15, 8421–8428 (1999)

    Article  CAS  Google Scholar 

  14. D.P. Das, K.M. Parida, Catal. Surv. Asia 12, 203–213 (2008)

    Article  CAS  Google Scholar 

  15. J. Merida-Robles, E. Rodrıguez-Castellon, A. Jimenez-Lopez, J. Mol. Catal. A: Chem. 145, 169–181 (1999)

    Article  CAS  Google Scholar 

  16. R. Hernandez-Huesca, J. Merida-Robles, P. Maireles-Torres, E. Rodrıuez-Castellon, A. Jimenez-Lopez, J. Catal. 203, 122–132 (2001)

    Article  CAS  Google Scholar 

  17. R. Hernandez-Huesca, J. Santamarıa-Gonzalez, P. Braos-Garcıa, P. Maireles-Torres, E. Rodrıguez-Castellón, A. Jiménez-Lopez, Appl. Catal. B: Environ. 29, 1–11 (2001)

    Article  CAS  Google Scholar 

  18. P. Kar, B.G. Mishra, S.R. Pradhan, J. Mol. Catal. A: Chem. 387, 103–111 (2014)

    Article  CAS  Google Scholar 

  19. P. Kar, A. Nayak, Y.P. Bhoi, B.G. Mishra, Microporous Mesoporous Mater. 223, 176–186 (2016)

    Article  CAS  Google Scholar 

  20. M.M. Heravi, B. Baghernejad, H.A. Oskooie, Curr. Org. Chem. 13, 1002–1014 (2009)

    Article  CAS  Google Scholar 

  21. V. Swamy Konkala, P.K. Dubey, Chin. Chem. Lett. 28, 1571–1576 (2017)

    Article  CAS  Google Scholar 

  22. A. Santra, G. Guchhait, A.K. Misra, Green Chem. 13, 1345–1351 (2011)

    Article  CAS  Google Scholar 

  23. A. kamal, K.S. Babu, S.M.A. Hussaini, P.S. Srikanth, M. Balakrishna, Tetrahedron Lett. 56, 4619–4622 (2015)

    Article  CAS  Google Scholar 

  24. S. Rostamnia, E. Doustkhah, J. Mol. Catal. A Chem. 411, 317–324 (2016)

    Article  CAS  Google Scholar 

  25. T. Aoyama, T. Suzuki, T. Nagaoka, T. Takido, M. kodomari, Synth. Commun. 43, 553–566 (2013)

    Article  CAS  Google Scholar 

  26. J. Safari, M. Ahmadzadeh, J. Taiwan Inst. Chem. Eng. 74, 14–24 (2017)

    Article  CAS  Google Scholar 

  27. V.K. Sharma, S.K. Singh, RSC Adv. 7, 2682–2732 (2017)

    Article  CAS  Google Scholar 

  28. S. Shabalala, S. Maddila, W.E.V. Zyl, S.B. Jonnalagadda, Ind. Eng. Chem. Res. 56, 11372–11379 (2017)

    Article  CAS  Google Scholar 

  29. P. Kar, B.G. Mishra, Chem. Eng. J. 223, 647–656 (2013)

    Article  CAS  Google Scholar 

  30. A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Tetrahedron Lett. 50, 5248–5250 (2009)

    Article  CAS  Google Scholar 

  31. P. Rondon, V.C. Casilda, R.M.M. Aranda, B. Casal, C.J.D. Valle, M.L.R. Cervantes, Appl. Surf. Sci. 252, 6080–6083 (2006)

    Article  CAS  Google Scholar 

  32. E. Yamuna, M. Zeller, K.J.R. Prasad, Tetrahedron Lett. 52, 6805–6808 (2011)

    Article  CAS  Google Scholar 

  33. G. Sabitha, G.S.K. Kumar Reddy, Ch.S. Reddy, J.S. Yadav, Tetrahedron Lett. 44, 4129–4131 (2003)

    Article  CAS  Google Scholar 

  34. V. Sivamurugan, A. Vinu, M. Palanichamy, V. Murugesan, Heteroat. Chem. 17, 267–271 (2006)

    Article  CAS  Google Scholar 

  35. V. Sridharan, P.T. Perumal, C. Avendano, J.C. Menendez, Tetrahedron Lett. 63, 4407–4413 (2007)

    Article  CAS  Google Scholar 

  36. A. Maleki, M. Kamalzare, M. Aghaei, J. Nanostruct. Chem. 5, 95–105 (2015)

    Article  CAS  Google Scholar 

  37. B. Datta, M.A. Pasha, Chin. J. Catal. 32, 1180–1184 (2011)

    Article  CAS  Google Scholar 

  38. M. Maheswara, V. Siddaiah, Y.K. Rao, Y.-M. Tzeng, C. Sridhar, J. Mol. Catal. A: Chem. 260, 179–180 (2006)

    Article  CAS  Google Scholar 

  39. J.Y. Bottero, J.M. Cases, F. Flessinger, J.E. Polrier, J. Phys. Chem. 84, 2933–2939 (1980)

    Article  CAS  Google Scholar 

  40. J.M. Merida-Robles, P. Olivera-Pastor, A. Jimenez-Lopez, E. Rodriguez-Castellon, J. Phys. Chem. 100, 14726–14735 (1996)

    Article  CAS  Google Scholar 

  41. J. Xu, Z. Gao, Microporous Mesoporous Mater. 24, 213–222 (1998)

    Article  CAS  Google Scholar 

  42. N. He, Y. Yue, Z. Gao, Microporous Mesoporous Mater. 52, 1–9 (2002)

    Article  CAS  Google Scholar 

  43. K.D. Pont, J.F. Gerard, E. Espuche, Eur. Polym. J. 48, 217–227 (2012)

    Article  CAS  Google Scholar 

  44. R. Valluvan, K. Selvaraju, S. Kumararaman, Mater. Chem. Phys. 97, 81–84 (2006)

    Article  CAS  Google Scholar 

  45. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982)

    Google Scholar 

  46. K. Liu, X. Wang, S. Ding, Y. Li, W. Hua, Y. Yue, Z. Gao, J. Mol. Catal. A: Chem. 380, 84–89 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank BRNS, Mumbai (Grant No-37(2)/14/23/2015/BRNS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, D., Bhoi, Y.P., Das, K. et al. Sulfamic acid well dispersed in the micropores of Al-pillared α-ZrP as efficient heterogeneous catalyst for synthesis of structurally diverse 1,4-dihydropyridines under mild conditions. J Porous Mater 26, 1391–1405 (2019). https://doi.org/10.1007/s10934-019-00741-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00741-x

Keywords

Navigation