Skip to main content
Log in

Catalytic wet peroxide oxidation of phenol solution over Fe–Mn binary oxides diatomite composite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mn–Fe binary oxides incorporated into diatomite (denoted as FM-diatomite) was prepared by the redox reaction of KMnO4 and FeSO4 with pH ranging from 3 to 9. The catalytic activities of FM-diatomite were studied for phenol oxidation and were compared with iron oxide modified diatomite (F-diatomite) and manganese oxide modified diatomite (M-diatomite). The obtained catalysts were characterized by scanning electron microscope, powder X-ray diffraction, energy dispersive spectroscopy, transmission electron microscope, X-ray photoelectron spectroscopy, and nitrogen adsorption/desorption isotherms. The results show that Fe–Mn binary oxides were highly dispersed on the diatomite surface in which manganese oxide and iron oxide displayed multiple oxidation states including Mn4+, Mn3+, Fe2+ and Fe3+. The phenol oxidation by H2O2 through the use of Mn–Fe-diatomite as a catalyst was conducted. FM-diatomite exhibited as an excellent catalyst for the total oxidation of phenol and main intermediates (catechol and hydroquinone). The conversion of phenol and main intermediates by means of FM-diatomite was 100 % under 50 min while that by F-diatomite also was 100 % after 110 min but other intermediates still remained. While phenol conversion by M-diatomite was close to zero due to speedy hydroperoxide decomposition over the manganese oxide catalyst. These results show that there was a synergized effect of iron and manganese oxide present in FM-diatomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V.K. Gupta, J. Environ. Manag. 90, 2313–2342 (2009)

    Article  CAS  Google Scholar 

  2. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, J. Hazard. Mater. 160, 265–288 (2008)

    Article  CAS  Google Scholar 

  3. N.V. Pradeep, S. Anupama, K. Navya, H.N. Shalini Idris, M. Idris, U.S. Hampannavar, Appl. Water Sci. 5, 105–112 (2015)

    Article  CAS  Google Scholar 

  4. A.E. de los Monteros, G. Lafaye, A. Cervantes, G. Del Angel, J. Barbier Jr., G. Torres, Catal. Today 258, 564–569 (2015)

    Article  Google Scholar 

  5. L.D. Liu, W.M. Wang, L. Liu, B. Yu, Y.X. Zhang, X.Q. Wua, H.W. Zhang, X. Hang, Appl. Catal. B Environ. 185, 371–377 (2016)

    Article  CAS  Google Scholar 

  6. W.M. Wang, J. Song, X. Han, J. Hazard. Mater. 262, 412–419 (2013)

    Article  CAS  Google Scholar 

  7. O.P. Taran, A.B. Ayusheev, O.L. Ogorodnikova, I.P. Prosvirin, L.A. Isupova, V.N. Parmon, Appl. Catal. B Environ. 180, 86–93 (2016)

    Article  CAS  Google Scholar 

  8. E. Galán, I. González, E. Mayora, A. Miras, Appl. Clay Sci. 8, 1–18 (1993)

    Article  Google Scholar 

  9. M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, J. Environ. Manag. 69, 229 (2003)

    Article  CAS  Google Scholar 

  10. A.F. Danil de Namor, A.E. Gamouz, S. Frangie, V. Martinez, L. Valiente, O.A. Webb, J. Hazard. Mater. 241, 14–31 (2012)

    Article  Google Scholar 

  11. X. Li, C. Bian, W. Chen, J. He, Appl. Surf. Sci. 207, 378–383 (2003)

    Article  CAS  Google Scholar 

  12. F. Chang, J. Qu, H. Liu, R. Liu, X. Zhao, J. Colloid Interface Sci. 338, 353–358 (2009)

    Article  CAS  Google Scholar 

  13. R. Knoerr, J. Brendlé, B. Lebeau, H. Demais, Microporous Mesoporous Mater. 169, 185–191 (2013)

    Article  CAS  Google Scholar 

  14. Y. Du, G. Zheng, J. Wang, L. Wang, J. Wu, H. Dai, Microporous Mesoporous Mater. 200, 27–34 (2014)

    Article  CAS  Google Scholar 

  15. P. Lakshmipathiraj, B.R.V. Narasimhan, S. Prabhakar, G. Bhaskar Raju, J. Colloid Interface Sci. 304, 317–322 (2006)

    Article  CAS  Google Scholar 

  16. E.G. Vrieling, T.P.M. Beelen, R.A. Van Santen, W.W.C. Gieskes, Angew. Chem. Int. Ed. 9, 1543–1546 (2002)

    Article  Google Scholar 

  17. T. Wajima, M. Haga, K. Kuzawa, H. Ishimoto, O. Tamada, K. Ito, T. Nishiyama, R.T. Downs, J.F. Rakovan, J. Hazard. Mater. 132, 244–252 (2006)

    Article  CAS  Google Scholar 

  18. L. Mei, Y. Hu, C. Liu, J. Huang, Z. Liu, M. Wang, Z. An, RSC Adv. 4, 992–995 (2014)

    Article  Google Scholar 

  19. N. Jovic, N. Cvjetic Anin, B. Babic-Stojic, D. Makovec, V. Jokanovic, Ceram. Int. 39, 5659–5665 (2013)

    Article  CAS  Google Scholar 

  20. R. Mortimer, Physical chemistry, 3rd edn. (Elsevier Academic Press, Amsterdam, 2008)

    Google Scholar 

  21. E.G. Garrido-Ramirez, B.K.G. Theng, M.L. Mora, Appl. Clay Sci. 47, 182–192 (2010)

    Article  CAS  Google Scholar 

  22. J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006)

    Article  CAS  Google Scholar 

  23. S. Wang, Dyes Pigments 76, 714–720 (2008)

    Article  CAS  Google Scholar 

  24. N. Inchaurrondo, J. Font, C.P. Ramos, P. Haurea, Appl. Catal. B Environ. 181, 481–494 (2016)

    Article  CAS  Google Scholar 

  25. D.B. Broughtonr, L. Wentwort, M.E. Laing, J. Am. Chem. Soc. 69(4), 741–744 (1947)

    Article  Google Scholar 

  26. H. Zhou, Y.F. Shen, J.Y. Wang, X. Chen, C.L. O’Young, S.L. Steven, J. Catal. 176, 321–328 (1998)

    Article  CAS  Google Scholar 

  27. M. Baldi, F. Elisabetta, P. Chiara, B. Guido, Appl. Catal. A Gen. 173, 61–74 (1998)

    Article  CAS  Google Scholar 

  28. S.H. Do, B. Batchelor, H.K. Lee, S.H. Kong, Chemosphere 75, 8–12 (2009)

    Article  CAS  Google Scholar 

  29. J.F. Akyurtlu, A. Akyurtlu, S. Kovenklioglu, Catal. Today 40, 343–352 (1998)

    Article  CAS  Google Scholar 

  30. Z.P.G. Masende, B.F.M. Kuster, K.J. Ptasinski, F.J.J.G. Janssen, J.H.Y. Katima, J.C. Schouten, Appl. Catal. B 41, 247–267 (2003)

    Article  CAS  Google Scholar 

  31. S.S. Lin, M.D. Gurol, Environ. Sci. Technol. 32, 1417–1423 (1998)

    Article  CAS  Google Scholar 

  32. M. Esther Leena Preethi, S. Revathi, T. Sivakumar, D. Manikandan, D. Divakar, A. Valentine Rupa, M. Palanichami, Catal. Lett. 120, 56–64 (2008)

    Article  Google Scholar 

  33. G. Ovejero, J.L. Sotelo, F. Martínez, J.A. Melero, L. Gordo, Ind. Eng. Chem. Res. 40, 3921–3928 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Hue University, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, B.H.D., Mai, V.Q., Du, D.X. et al. Catalytic wet peroxide oxidation of phenol solution over Fe–Mn binary oxides diatomite composite. J Porous Mater 24, 601–611 (2017). https://doi.org/10.1007/s10934-016-0296-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0296-7

Keywords

Navigation