Skip to main content
Log in

Isolation of α-Glucuronidase Enzyme from a Rumen Metagenomic Library

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

α-Glucuronidase enzymes play an essential role in the full enzymatic hydrolysis of hemicellulose. Up to this point, all genes encoding α-glucuronidase enzymes have been cloned from individual, pure culture strains. Using a high-throughput screening strategy, we have isolated the first α-glucuronidase gene (rum630-AG) from a mixed population of microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The RUM630-AG enzyme had optimum activity at pH 6.5 and 40 °C. When birchwood xylan was used as substrate, the RUM630-AG functioned synergistically with an endoxylanase enzyme to hydrolyze the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MeGlcA:

4-O-methyl-d-glucuronic acid

GH:

Glycosyl hydrolase

ORF:

Open reading frame

RUM630-AG:

α-Glucuronidase from rumen microorganism

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410

    CAS  Google Scholar 

  2. Biely P (2002) In: Whitaker JR, Voragen AG, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York, NY, pp 879–915

    Google Scholar 

  3. Biely P, de Vries RP, Vrsanska M, Visser J (2000) Biochim Biophys Acta 1474:360–364

    Article  CAS  Google Scholar 

  4. Das NN, Das SC, Dutt AS, Roy A (1981) Carbohydr Res 94:73–82

    Article  CAS  Google Scholar 

  5. Das NN, Das SC, Mukherjee AK (1984) Carbohydr Res 127:345–348

    Article  CAS  Google Scholar 

  6. de Wet BJM, Prior BA (2004) In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DC, pp 241–254

    Chapter  Google Scholar 

  7. de Wet BJM, van Zyl WH, Prior BA (2006) Enzyme Microb Technol 38:649–656

    Article  Google Scholar 

  8. Gao Z, Ruan L, Chen X, Zhang Y, Xu X (2010) Appl Microbiol Biotechnol 87:1373–1382

    Article  CAS  Google Scholar 

  9. Henrissat B, Bairoch A (1996) Biochem J 316:695–696

    Google Scholar 

  10. Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, Wang H, Liu Z (2010) J Microbiol 48:318–324

    Article  CAS  Google Scholar 

  11. Iiyama K, Lam T, Stone BA (1994) Plant Physiol 104:315–320

    CAS  Google Scholar 

  12. Johnson KG, Silva MC, MacKenzie CR, Schneider H, Fontana JD (1989) Appl Biochem Biotechnol 20(21):245–258

    Article  Google Scholar 

  13. Khandke KM, Vithayathil PJ, Murthy SK (1989) Arch Biochem Biophys 274:511–517

    Article  CAS  Google Scholar 

  14. Kim YH, Kwon EJ, Kim SK, Jeong YS, Kim J, Yun HD, Kim H (2010) Biochem Biophys Res Commun 393:45–49

    Article  CAS  Google Scholar 

  15. Lee CC, Wagschal K, Kibblewhite-Accinelli RE, Orts WJ, Robertson GH, Wong DW (2009) Appl Biochem Biotechnol 155:314–320

    Article  CAS  Google Scholar 

  16. Li R, Kibblewhite R, Orts WJ, Lee CC (2009) World J Microbiol Biotechnol 25:2071–2078

    Article  CAS  Google Scholar 

  17. Meilleur C, Hupe JF, Juteau P, Shareck F (2009) J Ind Microbiol Biotechnol 36:853–861

    Article  CAS  Google Scholar 

  18. Miller GL (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  19. Milner Y, Avigad G (1967) Carbohydr Res 4:359–361

    Article  CAS  Google Scholar 

  20. Poutanen K, Tenkanen M, Korte H, Puls J (1991) In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, DC, pp 426–436

    Chapter  Google Scholar 

  21. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) Appl Environ Microbiol 71:817–825

    Article  CAS  Google Scholar 

  22. Roh C, Villatte F (2008) J Appl Microbiol 105:116–123

    Article  CAS  Google Scholar 

  23. Roy N, Timell TE (1968) Carbohydr Res 6:482–487

    Article  CAS  Google Scholar 

  24. Ryabova O, Vrsanska M, Kaneko S, van Zyl WH, Biely P (2009) FEBS Lett 583:1457–1462

    Article  CAS  Google Scholar 

  25. Saha BC (2003) J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  26. Schmeisser C, Steele H, Streit WR (2007) Appl Microbiol Biotechnol 75:955–962

    Article  CAS  Google Scholar 

  27. Shallom D, Shoham Y (2003) Curr Opin Microbiol 6:219–228

    Article  CAS  Google Scholar 

  28. Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) J Bacteriol 181:3695–3704

    CAS  Google Scholar 

  29. Siika-aho M, Tenkanen M, Buchert J, Puls J, Viikari L (1994) Enzyme Microb Technol 16:813–819

    Article  CAS  Google Scholar 

  30. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Science 306:2206–2211

    Article  CAS  Google Scholar 

  31. Spiridon I, Popa VI (2005) In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, NY, pp 475–489

    Google Scholar 

  32. Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Biosci Biotechnol Biochem 65:487–494

    Article  CAS  Google Scholar 

  33. Takahashi N, Koshijima T (1988) Wood Sci Technol 22:231–241

    Article  CAS  Google Scholar 

  34. Tenkanen M, Siika-aho M (2000) J Biotechnol 78:149–161

    Article  CAS  Google Scholar 

  35. Timell TE (1964) Adv Carbohydr Chem 19:247–302

    CAS  Google Scholar 

  36. Timell TE (1965) Adv Carbohydr Chem 20:409–483

    CAS  Google Scholar 

  37. Wong DW (2006) Appl Biochem Biotechnol 133:87–112

    Article  CAS  Google Scholar 

  38. Zaide G, Shallom D, Shulami S, Zolotnitsky G, Golan G, Baasov T, Shoham G, Shoham Y (2001) Eur J Biochem 268:3006–3016

    Article  CAS  Google Scholar 

Download references

Disclaimer

Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.C., Kibblewhite, R.E., Wagschal, K. et al. Isolation of α-Glucuronidase Enzyme from a Rumen Metagenomic Library. Protein J 31, 206–211 (2012). https://doi.org/10.1007/s10930-012-9391-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9391-z

Keywords

Navigation