Skip to main content

Advertisement

Log in

Quantitative Proteomic Analysis of CMS-Related Changes in Honglian CMS Rice Anther

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Honglian (HL) cytoplasmic male sterility (CMS) is one of the rice CMS types and has been widely used in hybrid rice production in China. The CMS line (Yuetai A, YTA) has a Yuetai B (maintainer line, YTB) nuclear genome, but has a rearranged mitochondrial (mt) genome consisting of Yuetai B. The fertility of hybrid (HL-6) was restored by restorer gene in nuclear genome of restorer line (9311). We used isotope-code affinity tag (ICAT) technology to perform the protein profiling of uninucleate stage rice anther and identify the CMS-HL related proteins. Two separate ICAT analyses were performed in this study: (1) anthers from YTA versus anthers from YTB, and (2) anthers from YTA versus anthers from HL-6. Based on the two analyses, a total of 97 unique proteins were identified and quantified in uninucleate stage rice anther under the error rate of less than 10%, of which eight proteins showed abundance changes of at least twofold between YTA and YTB. Triosephosphate isomerase, fructokinase II, DNA-binding protein GBP16 and ribosomal protein L3B were over-expressed in YTB, while oligopeptide transporter, floral organ regulator 1, kinase and S-adenosyl-l-methionine synthetase were over-expressed in YTA. Reduction of the proteins associated with energy production and lesser ATP equivalents detected in CMS anther indicated that the low level of energy production played an important role in inducing CMS-HL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HL:

Honglian

ICAT:

Isotope-code affinity tag

CMS:

Cytoplasmic male sterility

Rf:

Restorer fertility

YTA:

Yuetai A

YTB:

Yuetai B

References

  1. Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Plant Mol Biol 42(3):531–544

    Article  CAS  Google Scholar 

  2. Carlsson J, Lagercrantz U, Sundström J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K (2007) Plant J 49(3):452–462

    Article  CAS  Google Scholar 

  3. Chase CD (2007) Trends Genet 23(2):81–90

    Article  CAS  Google Scholar 

  4. Catusse J, Job C, Job D (2008) C R Biol 331(10):815–822

    Article  CAS  Google Scholar 

  5. Dai SJ, Chen TT, Chong K, Xue YB, Liu SQ, Wang T (2007) Mol Cell Proteomics 6(2):207–230

    CAS  Google Scholar 

  6. Dai SJ, Li L, Chen TT, Chong K, Xue YB, Wang T (2006) Proteomics 6:2504–2529

    Article  CAS  Google Scholar 

  7. Dewey RE, Siedow JN, Timothy DH, Levings CS III (1988) Science 239:293–295

    Article  CAS  Google Scholar 

  8. Ducos E, Touzet P, Boutry M (2001) Plant J 26(2):171–180

    Article  CAS  Google Scholar 

  9. Fujii S, Komatsu S, Toriyama K (2007) Plant Mol Biol 63:405–417

    Article  CAS  Google Scholar 

  10. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  11. Hanson MR (1991) Annu Rev Genet 25:461–486

    Article  CAS  Google Scholar 

  12. Hanson MR, Bentolila S (2004) Plant Cell 16:S154–S169

    Article  CAS  Google Scholar 

  13. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Plant Cell Physiol 46(1):23–47

    Article  CAS  Google Scholar 

  14. Ivanov MK, Dymshits GM (2007) Genetika 43(4):451–468

    CAS  Google Scholar 

  15. Jang S, Lee B, Kim C, Kim SJ, Yim J, Han JJ, Lee S, Kim SR, An G (2003) Plant Mol Biol 53(3):357–369

    Article  CAS  Google Scholar 

  16. Laser KD, Lersten NR (1972) Bot Rev 38:425–454

    Article  Google Scholar 

  17. Lee SL, Warmke HE (1979) Am J Bot 66:141–148

    Article  Google Scholar 

  18. Li SQ, Wan CX, Kong J, Zhang ZJ, Li YS, Zhu YG (2004) Funct Plant Biol 31:369–376

    Article  CAS  Google Scholar 

  19. Lin SC, Yuan LP (1980) Hybrid rice breeding in China. International Rice Research Institute, Manila, pp 35–51

    Google Scholar 

  20. Linke B, Börner T (2005) Mitochondrion 5:389–402

    Article  CAS  Google Scholar 

  21. Lotková H, Cervinková Z, Kucera O, Kriváková P, Kand’ár R (2005) Chem Biol Interact 156(1):13–23

    Article  Google Scholar 

  22. Meredith D, Boyd CA (2000) Cell Mol Life Sci 57(5):754–778

    Article  CAS  Google Scholar 

  23. Patton WF, Schulenberg B, Steinberg TH (2002) Curr Opin Biotechnol 13(4):321–328

    Article  CAS  Google Scholar 

  24. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Electrophoresis 20(18):3551–3567

    Article  CAS  Google Scholar 

  25. Rao YS (1988) Cytohistology of cytoplasmic male sterile lines in hybrid rice. In: Smith WH, Bostian LR, Cervantes EP (eds) Hybrid rice. International Rice Research Institute, Manila, pp 115–128

    Google Scholar 

  26. Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) EMBO Rep 4(4):381–386

    Article  CAS  Google Scholar 

  27. Shinjyo C (1969) Jpn J Genet 44:149–156

    Article  Google Scholar 

  28. Smolka MB, Zhou H, Purkayastha S, Aebersold R (2001) Anal Biochem 297:25–31

    Article  CAS  Google Scholar 

  29. Stacey MG, Koh S, Becker J, Stacey G (2002) Plant Cell 14(11):2799–2811

    Article  CAS  Google Scholar 

  30. St. John JB (1970) Anal Biochem 37:409–416

    Article  CAS  Google Scholar 

  31. Teixeira RT, Knorpp C, Glimelius K (2005) J Exp Bot 56(414):1245–1253

    Article  CAS  Google Scholar 

  32. Wan CX, Li SQ, Wen L, Kong J, Wang K, Zhu YG (2007) Plant Cell Rep 26:373–382

    Article  CAS  Google Scholar 

  33. Wang ZH, Zou YJ, Li XY, Zhang QY, Chen LT, Wu H, Su DH, Chen YL, Guo JX, Luo D, Long Y, Zhong Y, Liu YG (2006) Plant Cell 18:676–687

    Article  CAS  Google Scholar 

  34. Warmke HE, Lee SL (1977) J Hered 68:213–222

    Google Scholar 

  35. Warmke HE, Lee SL (1978) Science 200(4341):561–563

    Article  CAS  Google Scholar 

  36. Wen L, Liu G, Zhang ZJ, Tao J, Wan CX, Zhu YG (2006) Hereditas (Beijing) 28(3):311–316

    CAS  Google Scholar 

  37. Xiao Z, Veenstra TD (2007) Methods Mol Biol 428:181–192

    Article  Google Scholar 

  38. Yi P, Wang L, Sun QP, Zhu YG (2002) Chin Sci Bull 47:744–747

    Article  Google Scholar 

  39. Yu LR, Johnson MD, Conrads TP, Smith RD, Morrison RS, Veenstra TD (2002) Electrophoresis 23(11):1591–1598

    Article  CAS  Google Scholar 

  40. Yui R, Iketani S, Mikami T, Kubo T (2003) Plant J 34(1):57–66

    Article  CAS  Google Scholar 

  41. Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, Pan C, Yi E, Eng J, Aebersold RH, Montine TJ (2005) Neurobiol Aging 26(2):207–227

    Article  CAS  Google Scholar 

  42. Zhu YG (2000) Male sterility biology in rice. Wuhan University, Wuhan, pp 158–178

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (30270149) and National 973 Program of China (Grant number: 2001CB108806). We thank the UAlbany Proteomics Facility for ICAT analysis, and we thank Dr. Daichang Yang for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingguo Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Hu, C., Hu, J. et al. Quantitative Proteomic Analysis of CMS-Related Changes in Honglian CMS Rice Anther. Protein J 28, 341–348 (2009). https://doi.org/10.1007/s10930-009-9199-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9199-7

Keywords

Navigation