Skip to main content

Advertisement

Log in

Preparation of Polymer Microparticles Through Non-aqueous Suspension Polycondensations: Part IV—Effect of the Continuous Phase on the Characteristics of Final Poly(Butylene Succinate) Particles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Suspension polycondensations used to manufacture poly(butylene succinate) (PBS) can be regarded as a type of inverse heterogeneous polymerization technique, as the monomer phase is formed by polar reacting compounds (1,4-butanediol and succinic acid) that are partially soluble in water and require the use of a nonpolar continuous phase in order to form stable suspended droplets. In this context, the main objective of the present study was to investigate the influence of the continuous phase on the kinetic behavior of suspension PBS reactions and the morphological aspects of PBS particles produced through suspension polycondensations. Particularly, renewable soybean oil was used here for the first time as the continuous phase for preparation of PBS microparticles and results were compared to data obtained when paraffin was used as the continuous phase. It is shown that soybean oil can be used successfully as the continuous phase of polycondensations, allowing for production of microparticles with regular spherical morphology and leading to sustainable greener processes, as the constituents of both the continuous and discontinuous phases can be obtained from renewable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from [12, 23])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Scott JL, Buchard A (2019) Polymers from plants: biomass fixed carbon dioxide as a resource. Managing global warming. Elsevier, Amsterdam, pp 503–525

    Chapter  Google Scholar 

  2. Huo B, Gu M, Wang Z (2019) Green or lean? A supply chain approach to sustainable performance. J Clean Prod 216:152–166. https://doi.org/10.1016/j.jclepro.2019.01.141

    Article  Google Scholar 

  3. John G, Nagarajan S, Vemula PK et al (2019) Natural monomers: a mine for functional and sustainable materials—occurrence, chemical modification and polymerization. Prog Polym Sci 92:158–209. https://doi.org/10.1016/j.progpolymsci.2019.02.008

    Article  CAS  Google Scholar 

  4. Costa R, Santos L (2017) Delivery systems for cosmetics—from manufacturing to the skin of natural antioxidants. Powder Technol 322:402–416. https://doi.org/10.1016/j.powtec.2017.07.086

    Article  CAS  Google Scholar 

  5. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99:178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029

    Article  CAS  PubMed  Google Scholar 

  6. Guan J, Chakrapani A, Hansford DJ (2005) Polymer microparticles fabricated by soft lithography. Chem Mater 17:6227–6229

    Article  CAS  Google Scholar 

  7. Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427. https://doi.org/10.1016/j.cocis.2014.07.002

    Article  CAS  Google Scholar 

  8. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP (2005) Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv 57:391–410. https://doi.org/10.1016/j.addr.2004.09.003

    Article  CAS  Google Scholar 

  9. Murillo M, Gamazo C, Irache JM, Gon MM (2002) Polyester microparticles as a vaccine delivery system for brucellosis: influence of the polymer on release. Phagocytosis Toxic 10:211–219. https://doi.org/10.1080/10611860290022642

    Article  CAS  Google Scholar 

  10. Obayemi JD, Danyuo Y, Dozie-nwachukwu S et al (2016) PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: effects of particle size on drug release kinetics and cell viability. Mater Sci Eng 66:51–65. https://doi.org/10.1016/j.msec.2016.04.071

    Article  CAS  Google Scholar 

  11. Machado F, Lima EL, Pinto JC (2007) Uma revisão sobre os processos de polimerização em suspensão. Polímeros 17:166–179. https://doi.org/10.1590/S0104-14282007000200016

    Article  CAS  Google Scholar 

  12. Dutra L, Nele M, Pinto JC (2018) A novel approach for the preparation of poly(butylene succinate) microparticles. Macromol Symp 381:1800118. https://doi.org/10.1002/masy.201800118

    Article  CAS  Google Scholar 

  13. Dutra L, Souza MN, Pinto JC (2018) Preparation of polymer microparticles through nonaqueous suspension polycondensations. Part II—effects of operating variables on properties of poly(butylene succinate). Macromol React Eng 12:1800039. https://doi.org/10.1002/mren.201800039

    Article  CAS  Google Scholar 

  14. da Silva DL, de Souza Belan Coasta T, Lobo VTV et al (2019) Preparation of polymer microparticles through non-aqueous suspension polycondensations: Part III—degradation of PBS microparticles in different aqueous environments. J Polym Environ 27:176–188. https://doi.org/10.1007/s10924-018-1329-x

    Article  CAS  Google Scholar 

  15. Brock T, Sherrington DC (1992) Preparation of spherical polybenzimidazole particulates using a non-aqueous suspension methodology. Polymer (Guildf) 33:1773–1777. https://doi.org/10.1016/0032-3861(92)91082-D

    Article  CAS  Google Scholar 

  16. Brock T, Sherrington DC, Swindell J (1994) Synthesis and characterisation of porous particulate polyimides. J Mater Chem 4:229. https://doi.org/10.1039/jm9940400229

    Article  Google Scholar 

  17. Ahn J-H, Sherrington DC (1996) Synthesis of functional polyimide beads and use as Mo VI epoxidation catalyst supports. Chem Commun. https://doi.org/10.1039/cc9960000643

    Article  Google Scholar 

  18. Jabbari E, Khakpour M (2000) Preparation of aqueous suspension of porous polyurethane microspheres by suspension polycondensation. Sci Iran 7:102–110. https://doi.org/10.1016/j.jconhyd.2010.08.009

    Article  CAS  Google Scholar 

  19. Wang P, Wang K, Zhang J, Luo G (2015) Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system—a new approach for the preparation of poly(p-phenylene terephthalamide). Chinese J Polym Sci 33:564–575. https://doi.org/10.1007/s10118-015-1607-1

    Article  CAS  Google Scholar 

  20. Arshady R (1989) Microspheres and microcapsules: a survey of manufacturing techniques. Part 1: suspension cross-linking. Polym Eng Sci 29:1746–1758. https://doi.org/10.1002/pen.760292404

    Article  CAS  Google Scholar 

  21. Bunge (2012) Soya. https://www.soya.com.br/produtos/oleos/oleo-de-soja-soya

  22. ANVISA (2005) Agência Nacional de Vigilância Sanitária. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0270_22_09_2005.html

  23. da Silva Dutra L, Nele M, Pinto JC (2020) Preparation of polymer microparticles through non-aqueous suspension polycondensations: Part IV—effect of the continuous phase on the characteristics of final poly(butylene succinate) particles. J Polym Environ

  24. Li W, Ghosh A, Bbosa D et al (2018) Comparative techno-economic, uncertainty and life cycle analysis of lignocellulosic biomass solvent liquefaction and sugar fermentation to ethanol. ACS Sustain Chem Eng 6:16515–16524. https://doi.org/10.1021/acssuschemeng.8b03622

    Article  CAS  Google Scholar 

  25. Schwaab M, Pinto JC (2007) Análise de Dados experimentais I Fundamentos de Estatistica e Estimação de Paramêtros. Editora E-papers, Rio de Janeiro

    Google Scholar 

  26. Ebnesajjad S (2006) Surface tension and its measurement. Surface treatment of materials for adhesion bonding. Elsevier, Amsterdam, pp 9–28

    Chapter  Google Scholar 

  27. December NO (2011) Vegetable oils in food technology. Wiley-Blackwell, Oxford

    Google Scholar 

  28. Bao L, Bian L, Zhao M et al (2014) Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle. Nanoscale Res Lett 9:1–6. https://doi.org/10.1186/1556-276X-9-391

    Article  CAS  Google Scholar 

  29. Khanifah L, Widodo S, Widarto W et al (2018) Characteristics of Paraffin Shielding of Kartini Reactor, Yogyakarta. ASEAN J Sci Technol Dev 35:195–198. https://doi.org/10.29037/ajstd.526

    Article  Google Scholar 

  30. Thakur N, Weatherly CA, Wimalasinghe RM, Armstrong DW (2019) Fabrication of interconnected macroporosity in geopolymers via inverse suspension polymerization. J Am Ceram Soc 102:4405–4409. https://doi.org/10.1111/jace.16437

    Article  CAS  Google Scholar 

  31. Jahanzad F, Sajjadi S, Brooks BW (2005) Comparative study of particle size in suspension polymerization and corresponding monomer−water dispersion. Ind Eng Chem Res 44:4112–4119. https://doi.org/10.1021/ie048827f

    Article  CAS  Google Scholar 

  32. Brooks B (2010) Suspension polymerization processes. Chem Eng Technol 33:1737–1744. https://doi.org/10.1002/ceat.201000210

    Article  CAS  Google Scholar 

  33. Dowding PJ, Vincent B (2000) Suspension polymerisation to form polymer beads. Colloids Surf 161:259–269. https://doi.org/10.1016/S0927-7757(99)00375-1

    Article  CAS  Google Scholar 

  34. Azevedo GD, da Silva Pinto JCC (2019) Particle size distributions of P(VAc-co-MMA) beads produced through nonconventional suspension copolymerizations. Powder Technol 355:727–737. https://doi.org/10.1016/j.powtec.2019.07.097

    Article  CAS  Google Scholar 

  35. Saien J, Fadaei V (2018) The study of interfacial tension of kerosene-water under influence of CTAB surfactant and different size silica nanoparticles. J Mol Liq 255:439–446. https://doi.org/10.1016/j.molliq.2018.01.120

    Article  CAS  Google Scholar 

  36. Rosen MJ, Kunjappu JT (2012) Phenomena surfactants and phenomena. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq (Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico) and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) for providing funds and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana da Silva Dutra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Dutra, L., de Souza, M.N. & Pinto, J.C. Preparation of Polymer Microparticles Through Non-aqueous Suspension Polycondensations: Part IV—Effect of the Continuous Phase on the Characteristics of Final Poly(Butylene Succinate) Particles. J Polym Environ 29, 219–229 (2021). https://doi.org/10.1007/s10924-020-01869-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01869-7

Keywords

Navigation