Skip to main content
Log in

Multidrug Core–Shell Bead: A System for Bacterial Infection Treatment in Fish

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study was developed to improve the durability and bioavailability of polymer matrix containing the antibacterial agent’s bacitracin (BAC), berberine (BER) and sodium nitroprusside (SNP), an ionotropic gelation method was successfully applied to prepare alginate/chitosan core–shell beads. The structure and properties of different core–shell beads were characterized by scanning electron microscopy (SEM), zeta potential, Fourier transform infrared spectroscopy (FTIR), thermal analysis (DSC), swelling tests, bioadhesive assay, release kinetic profile and antibacterial/antibacteriostatic activity in bacterial model. The morphology of beads was investigated by SEM, display relatively spherical shape and revealed rough surface was also observed the appearance of cracks probably caused by partial collapsing of the polymer network during drying. The diameter means particle size observed was around 1.04 ± 0.13 mm, the particles showed a neutral value, around + 0.305 mV. Using UV–Vis technique was observed a high entrapment efficiency of compounds BAC, BER and SNP (> 95%) in the alginate/chitosan core–shell beads. As demonstrated, there is increase in the swelling degree in pH 6.2. The drug release profile showed a pH-dependent release kinetics. At pH 5.0 the most suitable kinetic model is Higuchi, at pH 6.2 a zero-order model is observed, while at pH 7.4 the Korsmeyer–Peppas model present a good fit. The presence of compounds on beads was confirmed using FTIR analyses, and the results indicated that there is no interaction between drugs and vehicle used in the formulation. We can consider after DSC analysis that beads containing BAC, BER and SNP are thermally more stable than separate formulations having the characteristics required for application at room temperature. The release system produced has physical characteristics that allow the storage of the drugs for long periods of time maintaining their chemical and pharmacological properties unchanged. The percentage of adhesion displayed value of 66%, that indicates the improvement in adherence time on the absorbing surfaces to improves drug bioavailability and effectiveness of compounds. In this study is displayed the additive effect between BAC, BER and SNP shown the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections. These results indicate that the proposed strategy improves drug bioavailability and effectiveness of compounds in the treatment of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kotob MH, Menanteau-Ledouble S, Kumar G, Abdelzaher M, El-Matbouli M (2016) Vet Res 47(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB (2014) Appl Microbiol Biotechnol 98(8):3475–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Assefa A, Abunna F (2018) Vet Med Int 2018(5432):497

    Google Scholar 

  4. Costa P, Lobo JMS (2001) Eur J Pharm Sci 13(2):123–33

    Article  CAS  PubMed  Google Scholar 

  5. Mutoloki S, Munang’andu HM, Evensen O (2015) Front Immunol 6:519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. de Moraes FR, Santos DMS (2010) Qualidade da água e histopatologia de órgãos de peixes provenientes de criatórios do município de Itapecuru Mirim, Maranhão

  7. Carraschi SP, Cruz C, Neto JGM, Castro MP, Bortoluzzi NL (2011) GÃrio ACF. Arq Bras de Med Vet e Zootec 63:579–583

    Article  CAS  Google Scholar 

  8. Ciesiolka J, Jezowska-Bojczuk M, Wrzesinski J, Stokowa-Soltys K, Nagaj J, Kasprowicz A, Blaszczyk L, Szczepanik W (2014) Biochim Biophys Acta 1840(6):1782–9

    Article  CAS  PubMed  Google Scholar 

  9. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH, Support NUGR (2013) Environ Microbiol 15(7):1917–42

    Article  PubMed  Google Scholar 

  10. Johnson BA, Anker H, Meleney FL (1945) Science 102(2650):376–377

    Article  CAS  PubMed  Google Scholar 

  11. Ming LJ, Epperson JD (2002) J Inorg Biochem 91(1):46–58

    Article  CAS  PubMed  Google Scholar 

  12. Hong W, Gao X, Qiu P, Yang J, Qiao M, Shi H, Zhang D, Tian C, Niu S, Liu M (2017) Int J Nanomed 12:4691

    Article  CAS  Google Scholar 

  13. Venkateswerlu G (1981) J Biosci 3(1):1–5

    Article  CAS  Google Scholar 

  14. Chen ZJ, Chen JX, Wu LK, Li BY, Tian YF, Min X, Huang ZP, Yu RA (2019) Biomed Environ Sci 32(1):1–10

    Article  PubMed  Google Scholar 

  15. Bahar M, Deng Y, Zhu X, He S, Pandharkar T, Drew ME, Navarro-Vazquez A, Anklin C, Gil RR, Doskotch RW, Werbovetz KA, Kinghorn AD (2011) Bioorg Med Chem Lett 21(9):2606–10

    Article  CAS  PubMed  Google Scholar 

  16. Bellmann R, Smuszkiewicz P (2017) Infection 45(6):737–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattarai R, Dhandapani N, Shrestha A (2011) Chron Young Sci 2(4):192–196

    Article  CAS  Google Scholar 

  18. Imenshahidi M, Hosseinzadeh H (2016) Phytother Res 30(11):1745–1764

    Article  PubMed  Google Scholar 

  19. Boateng JS, Ayensu I (2014) Drug Dev Ind Pharm 40(5):611–8

    Article  CAS  PubMed  Google Scholar 

  20. Bravo-Osuna I, Andres-Guerrero V, Arranz-Romera A, Esteban-Perez S, Molina-Martinez IT, Herrero-Vanrell R (2018) Adv Drug Deliv Rev 126:127–144

    Article  CAS  PubMed  Google Scholar 

  21. Caetano LA, Almeida AJ, Goncalves LMD (2016) Mar Drugs 14(5):90

    Article  PubMed Central  CAS  Google Scholar 

  22. George M, Abraham TE (2006) J Control Release 114(1):1–14

    Article  CAS  PubMed  Google Scholar 

  23. Guo MQ, Hu X, Wang C, Ai L (2017) Polysaccharides: structure and solubility. In: Xu Z (ed) Solubility of polysaccharides. IntechOpen. https://doi.org/10.5772/intechopen.71570

    Chapter  Google Scholar 

  24. Chourasia MK, Jain SK (2004) Drug Deliv 11(2):129–48

    Article  CAS  PubMed  Google Scholar 

  25. Smola M, Vandamme T, Sokolowski A (2008) Int J Nanomed 3(1):1–19

    Article  CAS  Google Scholar 

  26. Zhang L, Sang Y, Feng J, Li Z, Zhao A (2016) J Drug Target 24(7):579–89

    Article  CAS  PubMed  Google Scholar 

  27. Pardakhty A, Ranjbar M, Moshafi MH, Abbasloo S (2018) J Clust Sci 29(6):1061–1068

    Article  CAS  Google Scholar 

  28. Han S, Dwivedi P, Mangrio FA, Dwivedi M, Khatik R, Cohn DE, Si T, Xu RX (2019) Artif Cells Nanomed Biotechnol 47(1):957–967

    Article  CAS  PubMed  Google Scholar 

  29. Andersen T, Bleher S, Flaten GE, Tho I, Mattsson S, Skalko-Basnet N (2015) Mar Drugs 13(1):222–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gomes AJ, Lunardi CN, Lunardi LO, Pitol DL, Machado AEH (2008) Micron 39(1):40–4

    Article  CAS  PubMed  Google Scholar 

  31. de Jesus Gomes A, Lunardi CN, Caetano FH, Lunardi LO, da Hora Machado AE (2006) Microsc Microanal 12(5):399–405

    Article  CAS  Google Scholar 

  32. Souza CR, Oliveira HR, Pinheiro WM, Biswaro LS, Azevedo RB, Gomes AJ, Lunardi CN (2015) J Biomater Nanobiotechnol 6(01):53

    Article  CAS  Google Scholar 

  33. Nagarwal RC, Ridhurkar DN, Pandit JK (2010) AAPS PharmSciTech 11(1):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arefin P, Hasan I, Reza MS (2016) Springerplus 5(1):691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Waterborg JH, Matthews HR (1984) Methods Mol Biol 1:1–3

    CAS  PubMed  Google Scholar 

  36. Takka S, GÃŒrel A (2010) AAPS PharmSciTech 11(1):460–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tahtat D, Mahlous M, Benamer S, Khodja AN, Oussedik-Oumehdi H, Laraba-Djebari F (2013) Int J Biol Macromol 58:160–8

    Article  CAS  PubMed  Google Scholar 

  38. Chavda H, Modhia I, Mehta A, Patel R, Patel C (2013) Biomed Res Int 2013(563):651

    Google Scholar 

  39. Campos J, Varas-Godoy M, Haidar ZS (2017) Nanomedicine (London) 12(5):473–490

    Article  CAS  Google Scholar 

  40. Ramadas M, Paul W, Dileep KJ, Anitha Y, Sharma CP (2000) J Microencapsul 17(4):405–11

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Hua S, Wang W, Wang A (2011) Iran Polym J 20(6):479–490

    CAS  Google Scholar 

  42. Francis-Floyd R (2011) Mycobacterial infections of fish. Southern Regional Aquaculture Center, Stoneville

    Google Scholar 

  43. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanomedicine 2(1):8–21

    Article  CAS  PubMed  Google Scholar 

  44. Gao X, Wang W, Wei S, Li WC (2009) Zhongguo Zhong Yao Za Zhi 34(21):2695–700

    CAS  PubMed  Google Scholar 

  45. Snyder JD, Walker WA (1987) Int Arch Allergy Appl Immunol 82(3–4):351–6

    Article  CAS  PubMed  Google Scholar 

  46. Tomkiewicz D, Casadei G, Larkins-Ford J, Moy TI, Garner J, Bremner JB, Ausubel FM, Lewis K, Kelso MJ (2010) Antimicrob Agents Chemother 54(8):3219–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yong Y, Kai H, Bao-Shun Z, Xue-Gang LI (2014) Pharmacogn Mag 10(38):97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boberek JM, Stach J, Good L (2010) PloS ONE 5(10):e13,745

    Article  CAS  Google Scholar 

  49. Wang Y, Kheir MM, Chai Y, Hu J, Xing D, Lei F, Du L (2011) PLoS ONE 6(8):e23,495

    Article  CAS  Google Scholar 

  50. Sadrearhami Z, Nguyen TK, Namivandi-Zangeneh R, Jung K, Wong EH, Boyer C (2018) J Mater Chem B 6(19):2945–2959

    Article  CAS  Google Scholar 

  51. Smith JN, Dasgupta TP (2001) J Inorg Biochem 87(3):165–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the University of Brasilia, the Coordination for the Improvement of Higher Educational Personnel (CAPES code 001), the Federal District Research Foundation (FAPDF), the Scientific and Technological Development Foundation (FINATEC), program PIQ and the National Council for Scientific and Technological Development (CNPq). A.J.G. and C.N.L. conceived and designed the research. O.A.B (PhD student) and C.C.L (undergraduate student) carried out the experiments, worked on the characterization analyses and helped to write the article. A.J.G was responsible for helping in the characterization tests and for guiding the analyses of physico-chemical data. C.N.L. performed SEM assays. A.J.G. interpreted the results, T.A.C. and H.S.M. helped to perform the biological tests. V.P.M was responsible for support in the antimicrobial assays. O.A.B performed fish antimicrobial assays. A.J.G. and C.N.L wrote the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson J. Gomes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.J., Barbizan, O.A., Lessa, C.C. et al. Multidrug Core–Shell Bead: A System for Bacterial Infection Treatment in Fish. J Polym Environ 27, 2395–2407 (2019). https://doi.org/10.1007/s10924-019-01524-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01524-w

Keywords

Navigation