Skip to main content
Log in

Adsorption of Methylene Blue, Brilliant Green and Rhodamine B from Aqueous Solution Using Collagen-g-p(AA-co-NVP)/Fe3O4@SiO2 Nanocomposite Hydrogel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, the collagen-g-poly(acrylic acid-co-N-vinylpyrrolidone)/Fe3O4@SiO2 (collagen-g-p(AA-co-NVP)/Fe3O4@SiO2) as magnetic nanocomposite hydrogel was synthesized by graft copolymerization of acrylic acid (AA) and N-vinylpyrrolidone (NVP) onto collagen in the presence of the Fe3O4@SiO2 using ammonium persulfate as a free radical initiator and bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker under ultrasound-assisted condition. The blank collagen-g-p(AA-co-NVP) hydrogel and its composite with the Fe3O4@SiO2 nanoparticles were characterized by means of FTIR, SEM-EDS, XRD, VSM and TGA methods. The effects of different parameters such as pH, dose of adsorbent and time on swelling behavior were examined. The swelling ratio of the collagen-g-p(AA-co-NVP) hydrogel increased in the presence of the Fe3O4@SiO2 nanoparticles. Adsorption behavior of magnetic nanocomposite hydrogel was investigated for the adsorption of dyes and it was found to remove about 93% for methylene blue, 96% for brilliant green and 89% for rhodamine B in 50 mg/L of dyes solutions at pH 7. Kinetic study revealed the applicability of pseudo-first-order and pseudo-second-order models for the adsorption of mentioned dyes. The adsorption isotherm was studied in 25, 35, 45 and 55 °C using Langmuir, Freundlich, Temkin and Sips models and the adsorption data were well described by Langmuir isotherm model. Negative values of ΔGº for all three dyes suggested the feasibility of dyes removal and support for spontaneous adsorption of mentioned dyes on magnetic nanocomposite hydrogel. Desorption of dyes from the dye loaded nanocomposite hydrogel was simply done in ethanol. The results indicate that the prepared magnetic nanocomposite hydrogel is an efficient adsorbent with high adsorption capacity for the aforementioned dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang J, Liu F (2012) UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal. Mater Sci Eng B 177:1633–1640. https://doi.org/10.1016/j.mseb.2012.08.019

    Article  CAS  Google Scholar 

  2. Saini J, Garg VK, Gupta RK, Kataria N (2017) Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC). J Environ Chem Eng 5:884–892. https://doi.org/10.1016/j.jece.2017.01.012

    Article  CAS  Google Scholar 

  3. Shi Y, Xue Z, Wang X et al (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179. https://doi.org/10.1007/s00289-012-0898-4

    Article  CAS  Google Scholar 

  4. Ozal E, Kuralay E, Yildirim V et al (2005) Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery. Ann Thorac Surg 79:1615–1619. https://doi.org/10.1016/j.athoracsur.2004.10.038

    Article  PubMed  Google Scholar 

  5. Moawed EA, Wahba AE, Gabr RA (2018) Synthesis and application of LGB/St/Al2O3 biocomposite for sensitive detection and efficient removal of brilliant green dye from wastewater. J Environ Chem Eng 6:7225–7232. https://doi.org/10.1016/j.jece.2018.11.017

    Article  CAS  Google Scholar 

  6. Ptaszkowska-koniarz M, Goscianska J, Pietrzak R (2018) Removal of rhodamine B from water by modified carbon xerogels. Coll Surf A 543:109–117. https://doi.org/10.1016/j.colsurfa.2018.01.057

    Article  CAS  Google Scholar 

  7. Zhou HY, Chen XG, Kong M et al (2008) Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym 73:265–273. https://doi.org/10.1016/j.carbpol.2007.11.026

    Article  CAS  Google Scholar 

  8. Xu X-D, Zhang X-Z, Cheng S-X et al (2007) A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity. Carbohydr Polym 68:416–423. https://doi.org/10.1016/j.carbpol.2006.11.019

    Article  CAS  Google Scholar 

  9. Zhu C, Lu Y, Peng J et al (2012) Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv Funct Mater 22:4017–4022. https://doi.org/10.1002/adfm.201201020

    Article  CAS  Google Scholar 

  10. Tóth IY, Veress G, Szekeres M et al (2015) Magnetic hyaluronate hydrogels: preparation and characterization. J Magn Magn Mater 380:175–180. https://doi.org/10.1016/j.jmmm.2014.10.139

    Article  CAS  Google Scholar 

  11. Bexiga NM, Bloise AC, de Moraes MA et al (2017) Production and characterization of fibroin hydrogel using waste silk fibers. Fibers Polym 18:57–63. https://doi.org/10.1007/s12221-017-6805-8

    Article  CAS  Google Scholar 

  12. Mohammadinezhad A, Bagheri Marandi G, Farsadrooh M, Javadian H (2018) Synthesis of poly(acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. Ultrason Sonochem 49:1–12. https://doi.org/10.1016/j.ultsonch.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  13. Mallakpour S, Jarahiyan A (2017) Utilization of ultrasonic irradiation as a green and effective strategy to prepare poly(N-vinyl-2-pyrrolidone)/modified nano-copper (II) oxide nanocomposites. Ultrason Sonochem 37:128–135. https://doi.org/10.1016/j.ultsonch.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  14. Shirsath SR, Patil AP, Patil R et al (2013) Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20:914–923. https://doi.org/10.1016/j.ultsonch.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Wang Y, He S et al (2018) Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2+. Ultrason Sonochem 40:221–229. https://doi.org/10.1016/j.ultsonch.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Feng J, Yan W (2016) Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for methylene blue. J Colloid Interface Sci 475:26–35. https://doi.org/10.1016/j.jcis.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  17. Saini J, Garg VK, Gupta RK (2018) Removal of methylene blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. J Mol Liq 250:413–422. https://doi.org/10.1016/j.molliq.2017.11.180

    Article  CAS  Google Scholar 

  18. Hu X, Wang Y, Zhang L et al (2018) Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. Int J Biol Macromol 107:1811–1820. https://doi.org/10.1016/j.ijbiomac.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Feng J, Yan W (2013) Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for methylene Blue. Appl Surf Sci 279:400–408. https://doi.org/10.1016/j.apsusc.2013.04.127

    Article  CAS  Google Scholar 

  20. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  21. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  22. Mahdavi M, Ahmad M, Haron M et al (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. https://doi.org/10.3390/molecules18077533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bagheri Marandi G, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly(Sodium Acrylate-co-Acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18:1487–1499. https://doi.org/10.1007/s10965-010-9554-6

    Article  CAS  Google Scholar 

  24. Mittal H, Kumar V, Saruchi SS (2016) Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int J Biol Macromol 89:1–11. https://doi.org/10.1016/j.ijbiomac.2016.04.050

    Article  CAS  PubMed  Google Scholar 

  25. Bagheri Marandi G, Kermani ZP, Kurdtabar M (2013) Fast and efficient removal of cationic dyes from aqueous solution by collagen-based hydrogel nanocomposites. Polym Plast Technol Eng 52:310–318. https://doi.org/10.1080/03602559.2012.748806

    Article  CAS  Google Scholar 

  26. Kurdtabar M, Peyvand Kermani Z, Bagheri Marandi G (2015) Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iran Polym J 24:791–803. https://doi.org/10.1007/s13726-015-0368-6

    Article  CAS  Google Scholar 

  27. Dil NN, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J Hazard Mater 351:38–53. https://doi.org/10.1016/j.jhazmat.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  28. Mittal H, Ray SS (2016) A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol 88:66–80. https://doi.org/10.1016/j.ijbiomac.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Shao H, Zheng H et al (2016) Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. Int J Miner Metall Mater 23:1112–1118. https://doi.org/10.1007/s12613-016-1329-6

    Article  CAS  Google Scholar 

  30. Liu X, Tao Y, Mao H et al (2017) Construction of magnetic-targeted and NIR irradiation-controlled drug delivery platform with Fe3O4@Au@SiO2 nanospheres. Ceram Int 43:5061–5067. https://doi.org/10.1016/j.ceramint.2017.01.017

    Article  CAS  Google Scholar 

  31. Ismail M, Kamal A, Hanafiah M et al (2015) Kinetics of methylene blue adsorption on sulphuric acid treated coconut (Cocos nucifiera) frond powder. Am J Environ Eng 5:33–37. https://doi.org/10.5923/c.ajee.201501.06

    Article  Google Scholar 

  32. Harifi T, Montazer M (2014) In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-fenton catalytic properties. J Mater Chem B 2:272–282. https://doi.org/10.1039/C3TB21445A

    Article  CAS  Google Scholar 

  33. Khalid I, Ahmad M, Minhas MU, Barkat K (2018) Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr Polym 181:1169–1179. https://doi.org/10.1016/j.carbpol.2017.10.092

    Article  CAS  PubMed  Google Scholar 

  34. Hur J, Im K, Kim SW et al (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8:10066–10076. https://doi.org/10.1021/nn502704g

    Article  CAS  PubMed  Google Scholar 

  35. Nath J, Dolui SK (2018) Synthesis of carboxymethyl cellulose-g-poly (acrylic acid)/ LDH hydrogel for in vitro controlled release of vitamin B12. Appl Clay Sci 155:65–73. https://doi.org/10.1016/j.clay.2018.01.004

    Article  CAS  Google Scholar 

  36. Dargahi M, Ghasemzadeh H, Bakhtiary A (2018) Highly efficient absorption of cationic dyes by nano composite hydrogels based on κ-carrageenan and nano silver chloride. Carbohydr Polym 181:587–595. https://doi.org/10.1016/j.carbpol.2017.11.108

    Article  CAS  PubMed  Google Scholar 

  37. Taghvay Nakhjiri M, Bagheri Marandi G, Kurdtabar M (2018) Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation. Int J Biol Macromol 117:152–166. https://doi.org/10.1016/j.ijbiomac.2018.05.140

    Article  CAS  PubMed  Google Scholar 

  38. Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482. https://doi.org/10.1016/j.cej.2014.04.098

    Article  CAS  Google Scholar 

  39. Foorginezhad S, Zerafat MM (2017) Microfiltration of cationic dyes using nano-clay membranes. Ceram Int 43:15146–15159. https://doi.org/10.1016/j.ceramint.2017.08.045

    Article  CAS  Google Scholar 

  40. Aflaki Jalali M, Dadvand Koohi A, Sheykhan M (2016) Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study. Carbohydr Polym 142:124–132. https://doi.org/10.1016/j.carbpol.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  41. Bagheri Marandi G, Baharloui M, Kurdtabar M et al (2015) Hydrogel with high laponite content as nanoclay: swelling and cationic dye adsorption properties. Res Chem Intermed 41:7043–7058. https://doi.org/10.1007/s11164-014-1797-0

    Article  CAS  Google Scholar 

  42. Mousavi SJ, Parvini M, Ghorbani M (2018) Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method. Carbohydr Polym 188:197–212. https://doi.org/10.1016/j.carbpol.2018.01.105

    Article  CAS  PubMed  Google Scholar 

  43. Tseng R-L, Wu F-C, Juang R-S (2010) Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. J Taiwan Inst Chem Eng 41:661–669. https://doi.org/10.1016/j.jtice.2010.01.014

    Article  CAS  Google Scholar 

  44. Gopal Reddi MR, Gomathi T, Saranya M, Sudha PN (2017) Adsorption and kinetic studies on the removal of chromium and copper onto chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int J Biol Macromol 104:1578–1585. https://doi.org/10.1016/j.ijbiomac.2017.01.142

    Article  CAS  PubMed  Google Scholar 

  45. Li K, Li Y, Zheng Z (2010) Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J Hazard Mater 178:553–559. https://doi.org/10.1016/j.jhazmat.2010.01.120

    Article  CAS  PubMed  Google Scholar 

  46. Zhou K, Li Y, Li Q et al (2018) Kinetic, isotherm and thermodynamic studies for removal of methylene blue using β-cyclodextrin/activated carbon aerogels. J Polym Environ 26:3362–3370. https://doi.org/10.1007/s10924-018-1219-2

    Article  CAS  Google Scholar 

  47. Liu C, Omer AM, Ouyang X (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol 106:823–833. https://doi.org/10.1016/j.ijbiomac.2017.08.084

    Article  CAS  PubMed  Google Scholar 

  48. Araújo CST, Almeida ILS, Rezende HC et al (2018) Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J 137:348–354. https://doi.org/10.1016/j.microc.2017.11.009

    Article  CAS  Google Scholar 

  49. Nethaji S, Sivasamy A, Mandal AB (2013) Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol 10:231–242. https://doi.org/10.1007/s13762-012-0112-0

    Article  CAS  Google Scholar 

  50. Eftekhari-Sis B, Rahimkhoei V, Akbari A, Araghi HY (2018) Cubic polyhedral oligomeric silsesquioxane nano-cross-linked hybrid hydrogels: synthesis, characterization, swelling and dye adsorption properties. React Funct Polym 128:47–57. https://doi.org/10.1016/j.reactfunctpolym.2018.05.002

    Article  CAS  Google Scholar 

  51. Jang HM, Yoo S, Choi Y-K et al (2018) Adsorption isotherm, kinetic modeling and mechanism of tetracycline on pinus taeda-derived activated biochar. Bioresour Technol 259:24–31. https://doi.org/10.1016/j.biortech.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Cai J, Zhong L et al (2018) Adsorption of reactive dyes onto chitosan /montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study. Water Sci Technol 77:2598–2612. https://doi.org/10.2166/wst.2018.221

    Article  CAS  PubMed  Google Scholar 

  53. Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587. https://doi.org/10.1016/j.jece.2014.05.020

    Article  CAS  Google Scholar 

  54. Taghvay Nakhjiri M, Bagheri Marandi G, Kurdtabar M (2018) Effect of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker on poly(AAm-co-AMPS)/Na-MMT hydrogel nanocomposite as potential adsorbent for dyes: kinetic, isotherm and thermodynamic study. J Polym Res 25:244–263. https://doi.org/10.1007/s10965-018-1625-0

    Article  CAS  Google Scholar 

  55. Chang J, Ma J, Ma Q et al (2016) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140. https://doi.org/10.1016/j.clay.2015.06.038

    Article  CAS  Google Scholar 

  56. Gao S, Zhang W, Zhou H, Chen D (2018) Magnetic composite Fe3O4/CeO2 for adsorption of azo dye. J Rare Earths 1–8. https://doi.org/10.1016/j.jre.2018.04.002

  57. Sahraei R, Sekhavat Pour Z, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984. https://doi.org/10.1016/j.jclepro.2016.10.170

    Article  CAS  Google Scholar 

  58. Sun X-F, Liu B, Jing Z, Wang H (2015) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23. https://doi.org/10.1016/j.carbpol.2014.11.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the instrumental supports received from the Islamic Azad University-Karaj branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Bagheri Marandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9698 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhjiri, M., Bagheri Marandi, G. & Kurdtabar, M. Adsorption of Methylene Blue, Brilliant Green and Rhodamine B from Aqueous Solution Using Collagen-g-p(AA-co-NVP)/Fe3O4@SiO2 Nanocomposite Hydrogel. J Polym Environ 27, 581–599 (2019). https://doi.org/10.1007/s10924-019-01372-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01372-8

Keywords

Navigation