Skip to main content
Log in

Development of Novel Biodegradable Enrofloxacin–Silica Composite for In Vitro Drug Release Kinetic Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A sustained drug delivery system is developed by using nonionic polymer to formulate drug release rate from silica capsules. To serve this purpose, silica capsules filled with poly(ethylene glycol) (PEG) were incorporated with a veterinary antibiotic drug enrofloxacin (ENF); as a model hydrophobic drug by using a general and facile sol–gel route. The physicochemical properties of the prepared drug-loaded composites were investigated by scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy and thermal analysis (TGA). The impact of the media’s ionic strength on the drug release was evaluated over a range of 0–0.4 M to simulate the gastrointestinal feed in two physiological pH conditions. Sodium chloride was applied for ionic concentration adjustment due to its ability to salt out polymers in the midrange of the lyotropic series. Simultaneously, the drug release kinetics was evaluated by fitting experimental data to common empirical (zero-order, first order and Higuchi) and semi-empirical (Ritger–Peppas and Sahlin–Peppas) models. The drug release kinetics from capsules revealed a non-Fickian diffusion and pure relaxation-controlled release. Of these models, Sahlin–Peppas equation best fit the release data of ENF. To determine the best model, non-linear regressions were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jimenez A, Zaikov GE (2009) Recent advances in research on biodegradable polymers and sustainable composites. Nova Science Publishers, New York

    Google Scholar 

  2. Aich N, Plazas-Tuttle J, Lead JR, Saleh NB (2014) Environ Chem 11(6):609–623

    Article  CAS  Google Scholar 

  3. de Sousa A, Maria DA, de Sousa RG et al (2010) J Mater Sci 45:1478–1486

    Article  CAS  Google Scholar 

  4. Catauro M, Papale F, Bollino F et al (2014) Mater Sci Eng C 40:253–259

    Article  CAS  Google Scholar 

  5. Kokkarachedu V, Vimala K, Sakey R et al (2012) J Polym Environ 20:573–582

    Article  CAS  Google Scholar 

  6. Ravindra S, Varaprasad K, Narayana RN et al (2011) J Polym Environ 19:413–418

    Article  CAS  Google Scholar 

  7. Khan NU, Bharathi NP, Shreaz S et al (2011) J Polym Environ 19:607–614

    Article  CAS  Google Scholar 

  8. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  PubMed  Google Scholar 

  9. Barbe BC, Bartlett J, Kong L et al (2004) Adv Mater 16:1959–1966

    Article  CAS  Google Scholar 

  10. Chen Y, Wang YJ, Yang LM, Luo GS (2008) AIChE J 54:298–309

    Article  CAS  Google Scholar 

  11. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Acc Chem Res 40:846–853

    Article  CAS  PubMed  Google Scholar 

  12. Persad CV, Swamy BY, Reddy CLN et al (2012) J Polym Environ 20:344–352

    Article  CAS  Google Scholar 

  13. Vialpando M, Aerts A, Persoons J et al (2011) J Pharm Sci 100(8):3411–3420

    Article  CAS  PubMed  Google Scholar 

  14. Speybroeck MV, Barillaro V, Thi TD et al (2009) J Pharm Sci 98(8):2648–2658

    Article  CAS  PubMed  Google Scholar 

  15. Utech S, Boccaccini AR (2016) J Mater Sci 51:271–310

    Article  CAS  Google Scholar 

  16. Catauro M, Renella RA, Papale F, Ciprioti SV (2016) Mater Sci Eng C 61:51–55

    Article  CAS  Google Scholar 

  17. Kerkhofs S, Saidi F, Vandarvoort N et al (2015) J Mater Chem B 3:3054–3061

    Article  CAS  Google Scholar 

  18. Haritova A, Lashev L, Pashov D (2003) Res Vet Sci 74:241–245

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa H, Keshikawa T, Matsumura M, Tsukamoto H (1991) Chem Pharm Bull 39:1837–1842

    Article  Google Scholar 

  20. Baral SS, Das N, Ramulu TS, Sahoo SK et al (2009) J Hazard Mater 161:1427–1435

    Article  CAS  PubMed  Google Scholar 

  21. Friend DR (1992) J Microencapsul 9:469–480

    Article  CAS  PubMed  Google Scholar 

  22. Takahasi Y, Tsukuda T, Izum C et al (1988) Chem Pharm Bull 36:2708–2710

    Article  Google Scholar 

  23. Alexander J, Fromtling RA, Bland JA et al (1991) J Med Chem 34(1):78–81

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki S, Lim JK (1994) J Microencapsul 11:197–203

    Article  CAS  PubMed  Google Scholar 

  25. Kim EH, Choi HK (2004) Drug Deliv 11:365–370

    Article  CAS  PubMed  Google Scholar 

  26. Kumar GP, Phani AR, Prasad RGSV. et al (2014) Int J Pharm 471:146–152

    Article  CAS  PubMed  Google Scholar 

  27. Song M, Song J, Ning A et al (2010) Mater Sci Eng C 30:58–61

    Article  CAS  Google Scholar 

  28. Ebadi A, Rafati AA (2015) J Mol Liq 209:239–245

    Article  CAS  Google Scholar 

  29. Baral SS, Das N, Ramulu TS et al (2009) J Hazard Mater 161:1427–1435

    Article  CAS  PubMed  Google Scholar 

  30. Martinez YN, Pinuel L, Castro GR, Breccia JD (2012) Appl Biochem Biotechnol 167:1421–1429

    Article  CAS  PubMed  Google Scholar 

  31. Yang HS, Choi SY (1999) Thin Solid Films 348:69–73

    Article  CAS  Google Scholar 

  32. Brinker CJ, Scherer GW (1990) Structural changes during heating: amorphous systems. Academic Press, New York, pp 547–615

    Google Scholar 

  33. Fonseca LC, Paulab AJ, Martinezc DST, Alves OL (2016) New J Chem 40:8060–8067

    Article  CAS  Google Scholar 

  34. Dressman JB, Reppas C (2000) Eur J Pharm Sci 11:S73–S80

    Article  CAS  PubMed  Google Scholar 

  35. Johnson JL, Holinej J, Williams MD (1993) Int J Pharm 90:151–159

    Article  CAS  Google Scholar 

  36. Lindahl WD, Ungell AL, Knutson L, Lennernas H (1997) Pharm Res 14:497–502

    Article  CAS  PubMed  Google Scholar 

  37. Colombo P, Catellani PL, Peppas NA et al (1992) Int J Pharm 88:99–109

    Article  CAS  Google Scholar 

  38. Bravo SA, Lamas MC, Salomon CJ (2002) J Pharm Pharm Sci 5:213–219

    CAS  PubMed  Google Scholar 

  39. Higuchi T (1963) J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  40. Baker RW, Lonsdale HS (1974) Controlled release of biologically active agents. Plenum Press, New York

    Google Scholar 

  41. Hixson AW, Crowell JH (1931) Ind Eng Chem 23:923–931

    Article  CAS  Google Scholar 

  42. Ritger PL, Peppas NA (1987) J Control Release 5:23–36

    Article  CAS  Google Scholar 

  43. Peppas NA, Sahlin JJ (1989) Int J Pharm 57:169–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Bu-Ali Sina University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Ebadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, A., Rafati, A.A. Development of Novel Biodegradable Enrofloxacin–Silica Composite for In Vitro Drug Release Kinetic Studies. J Polym Environ 26, 3404–3411 (2018). https://doi.org/10.1007/s10924-018-1228-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1228-1

Keywords

Navigation