Skip to main content

Advertisement

Log in

Synthesis of Porous Emulsion-Templated Monoliths Using a Low-Energy Emulsification Batch Mixer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Emulsion-templated porous monoliths based on castor oil-in-black liquor emulsions have been prepared using a low-energy emulsification technique. Lignins from black liquor polymerize in the continuous phase of the high internal phase emulsion to obtain highly microcellular materials with interconnected open porous structures. A two-step emulsification operating mode was developed in order to increase the maximum value of the castor-oil dispersed volume fraction obtained with the one-step emulsification mode (limited to 53 % of the total emulsion volume due to the very high viscosities of the fluids). A rheological study of the black liquor and of the prepared Medium Internal Phase Emulsions, have been conducted. Depending on the emulsification operating mode used, the morphology of the porous monoliths will differ. A rather low mean droplet size (about 6 μm) is obtained with the one-step mode, the two-step technique leads to a broader void size distribution and a further increase of added castor oil (up to 69 %) do not favor the homogeneity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarkanen KV, Ludwig CH (1971) Lignins: occurrence and formation, structure, chemical and macromolecular properties and utilisation Wiley. NJ, New York

    Google Scholar 

  2. Sjoestrom E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic, New York

    Google Scholar 

  3. Sixta H (2006) Handbook of pulp. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Smook GA (2002) Handbook of pulp and paper technologists, 3rd edn. Angus Wilde Publications, Vancouver

    Google Scholar 

  5. Cardoso M, Domingos de Oliveira E, Passos ML (2009) Fuel 88:756–763

    Article  CAS  Google Scholar 

  6. Adams TN, Frederick WJ, Grace TM, Hupa M, Iisa K, Jones AK, Tran H (1997) Kraft Recovery Boilers. TAPPI press, Atlanta

    Google Scholar 

  7. Monte MC, Fuente E, Blanco A, Negro C (2009) Waste Man 29:293–308

    Article  CAS  Google Scholar 

  8. Eriksson H, Harvey S (2004) Energy 29:581–612

    Article  CAS  Google Scholar 

  9. Verrill CL, Van Heiningen ARP, McKenzie J (2000) Tappi J 83:71

    CAS  Google Scholar 

  10. Gandini A, Belgacem MN (2008) Lignins as components of macromolecular materials. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, Chap. 11. Elsevier, Oxford, pp 243–271

    Chapter  Google Scholar 

  11. El-Zawawy WK, Ibrahim MM (2012) J Appl Polym Sci 124:4362–4370

    Article  CAS  Google Scholar 

  12. Kosbar LL, Gelorme JD, Japp RM, Fotorny WT (2000) J Ind Ecol 4:93–105

    Article  CAS  Google Scholar 

  13. Amal HA (2012) Chem Sin 3:689–697

    Google Scholar 

  14. Krafft P, Gilbeau P, Gosselin B, Claessens S (2004) WO 2005054167 to Solvay. CA 143:27037

  15. Cameron NR, Krajnc P, Silverstein MS (2011) In: Silverstein MS, Cameron NR, Hillmyer MA (eds) Porous polymers. Wiley, Hoboken

    Google Scholar 

  16. Barby D, Haq Z (1982) European Patent 0,060,138 to Unilever. CA 98:5252

  17. Williams JM, Wrobleski DA (1988) Langmuir 4:656–662

    Article  CAS  Google Scholar 

  18. Williams JM, Gray AJ, Wilkerson MH (1990) Langmuir 6:437–444

    Article  CAS  Google Scholar 

  19. Akay G, Bhumgara Z, Wakeman RJ (1995) Chem Eng Res Des 73:782–797

    CAS  Google Scholar 

  20. Barbetta A, Cameron NR, Cooper SJ (2000) Chem Commun 221–222

  21. Barbetta A, Cameron NR (2004) Macromolecules 37:3188–3201

    Article  CAS  Google Scholar 

  22. Barbetta A, Cameron NR (2004) Macromolecules 37:3202–3212

    Article  CAS  Google Scholar 

  23. Tai H, Sergienko A, Silverstein MS (2001) Polym Eng Sci 41:1540–1552

    Article  CAS  Google Scholar 

  24. Lépine O, Birot M, Deleuze H (2007) J Polym Sci A Polym Chem 45:4193–4203

    Article  Google Scholar 

  25. Normatov J, Silverstein MS (2007) Macromolecules 40:8329–8335

    Article  CAS  Google Scholar 

  26. Menner A, Powell R, Bismarck A (2006) Soft Matter 4:337–342

    Article  Google Scholar 

  27. Krajnc P, Stefanec D, Pulko I (2005) Macromol Rapid Commun 26(1289–1293):2005

    Google Scholar 

  28. Kulygin O, Silverstein MS (2007) Soft Matter 3:1525–1529

    Article  CAS  Google Scholar 

  29. Kovacic S, Jerabek K, Krajnc P (2011) Macromol Chem Phys 212:2151–2158

    Article  CAS  Google Scholar 

  30. Ko YC, Lindsay JD (2003) World Patent 044041. CA 140:363104

  31. Deleuze H, Birot M, Audouin F, Pasquinet E, Besnard O, Palmas P, Poullain D (2011) Macromolecules 44:4879–4886

    Article  Google Scholar 

  32. Youssef C, Backov R, Treguer M, Birot M, Deleuze H (2010) J Polym Sci A Polym Chem 48:2942–2947

    Article  CAS  Google Scholar 

  33. San Manley SS, Graeber N, Grof Z, Menner A, Hewitt GF, Stepanek F, Bismarck A (2009) Soft Matter 5:4780–4787

    Article  Google Scholar 

  34. Urban K, Wagner G, Schaffner D, Roglin D, Ulrich J (2006) Chem Eng Technol 29:24–31

    Article  CAS  Google Scholar 

  35. Lépine O, Birot M, Deleuze H (2008) Colloids Polym Sci 286:1273–1280

    Article  Google Scholar 

  36. Gringras JP, Fradette L, Tanguy P, Jorda E (2007) Ind Eng Chem Res 46:1818–1825

    Article  Google Scholar 

  37. Karbstein H, Schubert H (1995) Chem Eng Process 34:205–211

    Article  CAS  Google Scholar 

  38. Stang M, Schuchmann H, Schubert H (2001) Eng Life Sci 1:151–157

    Article  CAS  Google Scholar 

  39. Gringras JP, Fradette L, Tanguy P, Bousquet J (2007) Ind Eng Chem Res 46:2618–2627

    Article  Google Scholar 

  40. Salager JL, Forgiarini A, Marquez L, Pena A, Pizzino A, Rodriguez MP, Rondon-Gonzalez M (2004) Adv Colloid Interface Sci 108:259–272

    Article  Google Scholar 

  41. Caubet S, Le Guer Y, Grassl B, El Omari K, Normandin E (2011) AIChE J 57:27–39

    Article  CAS  Google Scholar 

  42. Maansson P (1983) Holzforschung 37:143–146

    Article  CAS  Google Scholar 

  43. Usón N, Garcia MJ, Solans C (2004) Colloids Surf A 250:415–421

    Article  Google Scholar 

  44. Russ JC (1986) Practical Stereology. Plenum, New York

    Book  Google Scholar 

  45. Kong M, Bhattacharya RN, James C, Basu A (2005) Geol Soc Am Bull 117:244–249

    Article  Google Scholar 

  46. Saidane D, Barbe JC, Birot M, Deleuze H (2010) J Appl Polym Sci 116:1184–1189

    CAS  Google Scholar 

  47. Yeo LY, Matar OK, Perez de Ortiz ES, Hewitt GF (2000) Multiphase Sci Technol 12:51–116

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by two Graduate Fellowships from the Région Aquitaine (C.F.), and Communauté d’Agglomération Pau-Pyrénées (CDAPP), (S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Deleuze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgacz, C., Caubet, S., Le Guer, Y. et al. Synthesis of Porous Emulsion-Templated Monoliths Using a Low-Energy Emulsification Batch Mixer. J Polym Environ 21, 683–691 (2013). https://doi.org/10.1007/s10924-013-0575-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0575-1

Keywords

Navigation