Skip to main content

Advertisement

Log in

Assessment and Classification of Mechanical Strength Components of Human Femur Trabecular Bone Using Texture Analysis and Neural Network

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this work the mechanical strength components of human femur trabecular bone are analyzed and classified using planar radiographic images and neural network. The mechanical strength regions such as Primary Compressive, Primary Tensile, Secondary Tensile and Ward Triangle in femur trabecular bone images (N = 100) are delineated by semi-automatic image processing procedure. First and higher order texture parameters and parameters such as apparent mineralization and total area associated with the strength regions are derived for normal and abnormal images. The statistically derived significant parameters corresponding to the primary strength regions are fed to the neural network for training and validation. The classifications are carried out using feed forward network that is trained with standard back propagation algorithm. Results demonstrate that the apparent mineralization of normal samples is always high as (71%) compared to abnormal samples (64%). Entropy shows a high value (7.3) for normal samples and variation between the mean intensity and apparent mineralization for the primary strength zone is statistically significant (p < 0.0005). The classified outputs are validated by sensitivity and specificity measurements and are found to be 66.66% and 80% respectively. Further it appears that it is possible to differentiate normal and abnormal samples from the conventional radiographic images. As trabecular architecture in the human femur is an important factor contributing to bone strength, the procedure adopted here could be a useful supplement to the clinical observations for bone loss and fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chinander, M. R., Giger, M. L., Martell, J. M., Jiang, C., and Favus, M. J., Computerized radiographic texture measures for characterizing bone strength: A simulated clinical setup using femoral neck specimens. Med. Phys. 26:2295–2300, 1999

    Article  Google Scholar 

  2. Erben, R. G., Trabecular and endocortical bone surfaces in the rat: Modeling or remodeling?. Anat. Rec. 246:39–46, 1996

    Article  Google Scholar 

  3. Harrigan, R. P., and Mann, R. W., Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19:761–767, 1984

    Article  Google Scholar 

  4. Tanaka, T., Sakurai T. and Kashima I., Structuring of parameters for assessing vertebral bone strength by star volume analysis using a morphological filter. J. Bone Miner. Metab. 19:150–158, 2001

    Article  Google Scholar 

  5. Weinstein, R. S., and Majumdar, S., Fractal geometry and vertebral compression fractures. J. Bone Miner. Metab. 9:1797–1802, 1994

    Google Scholar 

  6. Ouyang, X., Majumdar, S., Link, T. M., Augat, P., Lu, Y., and Lin, J. C., Radiographic assessment of trabecular structure: Correlation with biomedical strength and comparison with BMD. Orthopaedic Research Society 13:208–235, 1997

    Google Scholar 

  7. Link, T. M., Majumdar, S., Konermann, W., Meier, N., Lin, J. C., Newitt, D., Ouyang X., Peters, P. E., and Genant, H. K., Texture analysis of direct magnification radiographs of vertebral specimens: Correlation with bone mineral density and biomechanical properties. Acad. Radiol. 4:167–176, 1997

    Article  Google Scholar 

  8. Caligiuri, P., Giger, M. L., and Favus, M. J., Multifractal radiographic analysis of osteoporosis. Med. Phys. 21:503–508, 1994

    Article  Google Scholar 

  9. Cann, C., Genant, H., Kolb, F., and Ettinger, B., Quantitative computed tomography for the prediction of vertebral bone fracture risk. Bone 6:1–7, 1985

    Article  Google Scholar 

  10. Gordon, C. L., Webber, C. E., Christoforou, N., and Nahmias, C., In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images. Med. Phys. 24:585–593, 1997

    Article  Google Scholar 

  11. Antich, P., Anderson, J., Ashman, R., Dowdey, J., Gonzales, J., Murray, R., Zewekh, J., and Pak, C., Measurement of mechanical properties of bone material in vitro by ultrasound reflection : Methodology and comparison with ultrasound transmission. J. Bone Miner. Metab. 6:417–426, 1991

    Google Scholar 

  12. Mulder, L., Vanruijven, L. J., Koolstra, J. H., and Van Eijden, T. M. G. J., The influence of mineralization on intratrabecular stress and strain distribution in developing trabecular bone. Ann. Biomed. Eng. 35:1668–1677, 2007

    Article  Google Scholar 

  13. Benardos, P. G., and Vosniakos G.-C., Optimizing feed forward artificial neural network architecture. Artif. Intell. 20:365–382, 2007

    Google Scholar 

  14. Dokur, Z., and Olmez, T., ECG beat classification by a novel hybrid neural network. Comput. Methods Programs Biomed. 66:167–181, 2001

    Article  Google Scholar 

  15. Gurney, J. W., and Swensen, S. J., Solitary pulmonary nodules: Determining the likelihood of malignancy with neural network analysis. Radiology, 196(3):823–829, 1995

    Google Scholar 

  16. Perchiazzi, G., Hogman, M., Rylander, C., Giuliani, R., Fiore, T., and Hedenstierna G., Assessment of respiratory system mechanics by artificial neural networks: An exploratory study. J. Appl. Physiol. 90:1817–1824, 2001

    Article  Google Scholar 

  17. Mahesh, V., and Ramakrishnan S., Neural network based classification and analysis of human respiratory mechanics using spirometric measurements. Journal of Mechanics in Medicine and Biology 7:151–161, 2007

    Article  Google Scholar 

  18. Gregory, J. S., Junold, R. M., Undrill, P. E., and Aspden R. M., Analysis of trabecular bone structure using Fourier transforms and neural networks. IEEE Trans. Inf. Technol. Biomed. 3:289–294, 1999

    Article  Google Scholar 

  19. Jakubas-Przewlocka, J., Sawicki, A., and Przewlocki, P., Assessment of trabecular bone structure in postmenopausal and senile osteoporosis in women by image analysis. Scand. J. Rheumatol. 32:295–299, 2003

    Article  Google Scholar 

  20. Singh, M., Nagrath, A. R., and Maini, P. S., Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J. Bone Jt. Surg. 52:457–467, 1970

    Google Scholar 

  21. Lee, J., Blain, S., Casas, M., Kenny, J., Berall, G., and Chau, T., A radial basis classifier for the automatic detection of aspiration in children. Journal of Neuro Engineering and Rehabilitation, 3:14, 2006

    Article  Google Scholar 

  22. Mahesh, V., and Ramakrishnan, S., Assessment and classification of normal and restrictive respiratory conditions through pulmonary function test and neural network. J. Med. Eng. Technol. 31:300–304, 2007

    Article  Google Scholar 

  23. Mueller, G., and Russell, R. G. G., Osteoporosis: Pathogenesis and clinical intervention. Biochem. Soc. Trans. 31:1–5, 2003

    Article  Google Scholar 

  24. Ulrich, D., van Rietbergen, B., Laib, A., and Ruegsegger, P., The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25:55–60, 1999

    Article  Google Scholar 

  25. Newitt, D. C., Majumdar, S., van Rietbergen, B., von Ingersleben, G., Harris, S. T., Genant, H. K., Chesnut, C., Garnero, P., and MacDonald, B., In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos. Int. 13:6–17, 2002

    Article  Google Scholar 

  26. Smyth, P. P., Adams, J. E., Whitehouse, R. W., and Taylor, C. J., Application of computer texture analysis to the Singh index. Br. J. Radiol. 70:242–247, 1997

    Google Scholar 

  27. Borah, B., Gross, G. J., Dufresne, T. E., Smith, T. S., Cockman, M. D., Chmielewski, P. A., Lundy, M. W., Hartke, J. R., and Sod, E. W., Three-dimensional microimaging (MRmicrol and microCT), finite element modeling and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec. 265:101–110, 2001

    Article  Google Scholar 

  28. Lin, J. C., Grampp, S., Link, T., Kothari, M., Newitt, D. C., Felsenberg, D., and Majumdar, S., Fractal analysis of proximal femur radiographs: Correlation with biomechanical properties and bone mineral density. Osteoporos. Int. 9, 516–524, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, J.J., Ramakrishnan, S. Assessment and Classification of Mechanical Strength Components of Human Femur Trabecular Bone Using Texture Analysis and Neural Network. J Med Syst 32, 117–122 (2008). https://doi.org/10.1007/s10916-007-9114-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-007-9114-8

Keywords

Navigation