Skip to main content
Log in

Ultrasound Kidney Image Analysis for Computerized Disorder Identification and Classification Using Content Descriptive Power Spectral Features

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The objective of this work is to classify few important kidney categories by characterizing the tissues of kidney region using the unique power spectral features with ultrasound as imaging modality. The images are acquired from male and female subjects of age 45 ± 15 years. Three kidney categories namely normal, medical renal diseases and cortical cyst are considered for the analysis. The acquired images are initially pre-processed to retain the pixels-of-interest. The proposed features depend on the spatial distribution of spectral components in the kidney region. A set of power spectral features \( {\rm P}^{{W_{1} }}_{T} ,\,{\rm P}^{{W_{2} }}_{T} ,\,{\rm P}^{{R_{1} }}_{{T - W_{{12}} }} ,\,{\rm P}^{{R_{2} }}_{{T - W_{{12}} }} ,\,{\rm P}^{{R_{3} }}_{{T - W_{{1d}} }} \) and \( {\rm P}^{{R_{4} }}_{{T - W_{{1d}} }} \) are estimated at the specific cut-off frequencies Ω rc1 and Ω rc2 in the spectrum and by considering global mean total power. The results obtained show that the features are highly content descriptive and provide discrete range of values for each kidney category. Such isolated feature values facilitate to identify the kidney categories objectively which may be used as a secondary observer. The proposed method and features also explores the possibility of implementing computer-aided diagnosis system exclusively for US kidney images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hagen-Ansert, S., Urinary System In: Diagnostic Ultrasound. 4th Edition. Mosby: St. Louis, MO, 1995.

    Google Scholar 

  2. Pollack, H. M., and McClennan, B. L., Clinical Urography. 2nd Edition. Saunders: Philadelphia, 2000.

    Google Scholar 

  3. Huang, S-F., Chang, R-F., Chen, D-R., and Moon, W. K., Characterization of speculation on ultrasound lesions. IEEE Trans. Med. Imag. 23(1):111–121, 2004.

    Article  Google Scholar 

  4. Loizou, C. P., Christodoulou, C., Pattischis, C. S., Istepanian, R. S. H., Pantziaris, M., and Nicolaides, A., Speckle reduction in ultrasound images of atherosclerotic carotid plaque. IEEE Proc. 14 th Intl. Conf. Digital Signal Process., Santorini, Greece 1:525–528, 2002.

    Google Scholar 

  5. Eslami, A., Jahed, M., and Naroienejad, M., Fully automated cyst segmentation in ultrasound images of kidney. Proc. of 3 rd IASTED Intl. Conf. Biomed. Eng., Austria, Paper ID-19418, 2005.

  6. Loizou, C. P., Pattichis, C. S., Christodoulou, C. I., Istepanian, R. S. H., Pantziaris, M., and Nicolaides, A., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10):1653–1669, 2005.

    Article  Google Scholar 

  7. Bommanna Raja, K., Madheswaran, M., Thyagarajah, K., Reddy, M. R. S., and Swarnamani, S, Efficient information system for health care-study and implementation methodology. IETE Tech. Rev. 20(4):387–394, 2003.

    Google Scholar 

  8. Karthikeyini, C., Bommanna Raja, K., and Madheswaran, M., Study on Ultrasound kidney images using principal component analysis: A preliminary result. Proc. of 4th Indian Conference on Computer Vision, Graphics and Image Processing, ISI Kolkata, India, 1:190–195, 2004.

    Google Scholar 

  9. Bakker, J.,Olree, M., Kaatee, R., de Lange, E.E., and Beek, R. J. A., In vitro measurement of kidney size: Comparison of ultrasonography and MRI. Ultrasound Med. Biol. 24:683–688, 1997.

    Article  Google Scholar 

  10. Matre, K., Stokke, E. M., Martens, D., and Gilja, O. H., In vitro volume estimation of kidneys using 3-D ultrasonography and a position sensor. Eur. J. Ultrasound 10:65–73, 1999.

    Article  Google Scholar 

  11. Xie, J., Jiang, Y., and Tsui, H-t., Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imag. 24(1):45–57, 2005.

    Article  Google Scholar 

  12. Martin-Fernandez, M., and Alberola-Lopez, C., An approach for contour detection of human kidney from ultrasound images using Markov random fields and active contours. Med. Image Anal. 9:1–23, 2005.

    Article  Google Scholar 

  13. Eslami, A., Kasaei, S., and Jahed, M., Radial multi-scale cyst segmentation in ultrasound images of kidney. IEEE Proc. of 4th Intl. Symposium on Signal Processing and Information Technology, Rome, Italy 1:42–45, 2004.

    Google Scholar 

  14. Bommanna Raja, K., Madheswaran, M., and Thyagarajah, K., A general segmentation scheme for contouring kidney region in ultrasound kidney images using improved higher order spline interpolation. Intl. J. of Biomedical Sciences 2(2):81–88, 2007.

    Google Scholar 

  15. Veenland, J. F., Grashuis, J. L., and Gelsema, E. S., Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Med. Phys. 25(6):922–936, 1998.

    Article  Google Scholar 

  16. Yi, W. J., Park, K. S., Min, Y. G., and Sung, M. W., Distribution mapping of ciliary beat frequencies of respiratory epithelium cells using image processing. Med. Biol. Eng. Comput. 35(6):595–599, 1997.

    Article  Google Scholar 

  17. Tokudome, T., Mizushige, K., Ohmori, K., Watanabe, K., Takagi, Y., Takano, Y., and Matsuo, H., Neurogenic regulation of basal tone coronary artery with mild artherosclerosis in humans: Observation using two-dimensional intravascular ultrasound. Angiology 50(12):989–996, 1999.

    Article  Google Scholar 

  18. Spencer, T., Ramo, M. P., Salter, D. M., Anderson, T., Kearney, P. P., Sutherland, G. R., Fox, K. A., and McDicken, W. N., Characterization of atherosclerotic plaque by spectral analysis of intravascular ultrasound: An in vitro methodology. Ultrasound Med. Biol. 23(2):191–203, 1997.

    Article  Google Scholar 

  19. Fukushima, M., Ogawa, K., Kubota, T., and Hisa, N., Quantitative tissue characterization of diffuse liver diseases from ultrasound images by neural network. IEEE Proc. Nucl. Symp. 2:1233–1236, 1997.

    Google Scholar 

  20. Golub, R. M., Parsons, R. E., Sigel, B., Feleppa, E. J., Justin, J., Zaren, H. A., Rorke, M., Sokil-Melgar, J., and Kimitsuki, H., Differentiation of breast tumors by ultrasonic tissue characterization. J. Ultrasound Med. 12(10):601–608, 1993.

    Google Scholar 

  21. Allemann, N., Silverman, R. H., Reinstein, D. Z., and Coleman, D. J., High-frequency ultrasound imaging and spectral analysis in traumatic hyphema. Opthalmology 100(9):1351–1357, 1993.

    Google Scholar 

  22. Li, D., Meany, P. M, Fanning, M. W., Fang, Q., Pendergrass, S. A, and Raynold, T., Spectrum analysis of microwave breast examination data and reconstructed images. IEEE Proc. Int. Symp. Biomed. Imaging 1:62–65, 2002.

    Article  Google Scholar 

  23. Feleppa, E. J, Machi, J., Noritomi, T., Tateishi, T., Oishi, R., Yanagihara, E., and Jucha, J., Differentiation of metastatic from benign lymph nodes by spectrum analysis in vitro. IEEE Proc. Ultrason. Symp. 2:1137–1142, 1997.

    Google Scholar 

  24. Brunet-Imbault, B., Lemineur, G., Chappard, C., Harba, R., and Benhamou, C.-L., A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform. BMC Med. Imaging 5:4, 2005

    Article  Google Scholar 

  25. Gregory, J. S., Junold, R. M., Undrill, P. E., and Aspden, R. M. Analysis of trabecular bone structure using Fourier transforms and neural networks. IEEE Trans. Inf. Technol. Biomed. 3(4):289–294, 1999.

    Article  Google Scholar 

  26. Prabhu, K. G., Patil, K. M., and Srinivasan, S., Diabetic feet at risk: A new method of analysis of walking foot pressure images at different levels of neuropathy for early detection of plantar ulcers. Med. Biol. Eng. Comput. 39(3):288–293, 2001.

    Article  Google Scholar 

  27. Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models. Int. J. Comput. Vis. 1:321–331, 1988.

    Article  Google Scholar 

  28. Cohen, L. D., On active contour models and balloons. CVGIP—Image Underst. 53:211–218, 1991.

    Article  MATH  Google Scholar 

  29. Chen, T., and Metaxas, D., Image segmentation based on integration Markov random fields and deformable models. Proc. Intl. Conf. Medical Image Computing Computer-Assisted Intervention 1:256–265, 2000.

    Google Scholar 

  30. Friedland, N. S., and Rosenfeld, A., Ventricular cavity boundary detection from sequential ultrasound images using simulated annealing. IEEE Trans. Med. Imag. 8:344–353, 1989.

    Article  Google Scholar 

  31. Gonzales, R., and Woods, R., Digital Image Processing. Addison-Wesley, 1999.

  32. Anil, K. J., Fundamentals of Digital Image Processing. Prentice-Hall, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bommanna Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bommanna Raja, K., Madheswaran, M. & Thyagarajah, K. Ultrasound Kidney Image Analysis for Computerized Disorder Identification and Classification Using Content Descriptive Power Spectral Features. J Med Syst 31, 307–317 (2007). https://doi.org/10.1007/s10916-007-9068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-007-9068-x

Keywords

Navigation