Skip to main content

Advertisement

Log in

Epigenetic Modifications in 3D: Nuclear Organization of the Differentiating Mammary Epithelial Cell

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. It has recently been shown that the 3D spatial organization of chromosomes in the nucleus also plays a role in genome function. Indeed, the eukaryotic interphase nucleus contains sub-domains that are characterized by their enrichment in specific factors such as RNA Polymerase II, splicing machineries or heterochromatin proteins which render portions of the genome differentially permissive to gene expression. The positioning of individual genes relative to these sub-domains is thought to participate in the control of gene expression as an epigenetic mechanism acting in the nuclear space. Here, we review what is known about the sub-nuclear organization of mammary epithelial cells in connection with gene expression and epigenetics. Throughout differentiation, global changes in nuclear architecture occur, notably with respect to heterochromatin distribution. The positions of mammary-specific genes relative to nuclear sub-compartments varies in response to hormonal stimulation. The contribution of tissue architecture to cell differentiation in the mammary gland is also seen at the level of nuclear organization, which is sensitive to microenvironmental stimuli such as extracellular matrix signaling. In addition, alterations in nuclear organization are concomitant with immortalization and carcinogenesis. Thus, the fate of cells appears to be controlled by complex pathways connecting external signal integration, gene expression, epigenetic modifications and chromatin organization in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSN:

casein

CT:

Chromosome Territory

ECM:

Extracellular Matrix

lrECM:

laminin-rich ECM

FISH:

Fluorescent In-Situ Hybridization

H3K9Me3:

Histone H3 Tri-methylated Lysine9

H4K20Me3:

Histone H4 Tri-methylated Lysine20

MEC:

Mammary Epithelial Cell

WAP:

whey acidic protein

References

  1. Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800.

    Article  PubMed  CAS  Google Scholar 

  2. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  PubMed  CAS  Google Scholar 

  3. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol. 1999;146:1211–26.

    Article  PubMed  CAS  Google Scholar 

  4. Cremer M, Grasser F, Lanctot C, et al. Multicolor 3D Fluorescence In Situ Hybridization for Imaging Interphase Chromosomes. Methods Mol Biol. 2008;463:205–39.

    Article  PubMed  CAS  Google Scholar 

  5. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S. Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol. 2006;18:307–16.

    Article  PubMed  CAS  Google Scholar 

  6. Branco MR, Pombo A. Chromosome organization: new facts, new models. Trends Cell Biol. 2007;17:127–34.

    Article  PubMed  CAS  Google Scholar 

  7. Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol. 2005;6:44.

    Article  PubMed  CAS  Google Scholar 

  8. Heard E, Bickmore W. The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol. 2007;19:311–6.

    Article  PubMed  CAS  Google Scholar 

  9. Goetze S, Mateos-Langerak J, Gierman HJ, et al. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol. 2007;27:4475–87.

    Article  PubMed  CAS  Google Scholar 

  10. Kosak ST, Skok JA, Medina KL, et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 2002;296:158–62.

    Article  PubMed  CAS  Google Scholar 

  11. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997;91:845–54.

    Article  PubMed  CAS  Google Scholar 

  12. Francastel C, Magis W, Groudine M. Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci U S A. 2001;98:12120–5.

    Article  PubMed  CAS  Google Scholar 

  13. Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 2004;18:1119–30.

    Article  PubMed  CAS  Google Scholar 

  14. Christova R, Jones T, Wu PJ, et al. P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci. 2007;120:3262–70.

    Article  PubMed  CAS  Google Scholar 

  15. Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST. A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res. 2003;11:513–25.

    Article  PubMed  CAS  Google Scholar 

  16. Osborne CS, Chakalova L, Brown KE, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36:1065–71.

    Article  PubMed  CAS  Google Scholar 

  17. Brown JM, Green J, das Neves RP, et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol. 2008;182:1083–97.

    Article  PubMed  CAS  Google Scholar 

  18. Hu Q, Kwon YS, Nunez E, et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A. 2008;105:19199–204.

    Article  PubMed  Google Scholar 

  19. Sutherland H, Bickmore WA. Transcription factories: gene expression in unions? Nat Rev Genet. 2009;10:457–66.

    Article  PubMed  CAS  Google Scholar 

  20. Schoenfelder S, Sexton T, Chakalova L, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010;42:53–61.

    Article  PubMed  CAS  Google Scholar 

  21. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Interchromosomal associations between alternatively expressed loci. Nature. 2005;435:637–45.

    Article  PubMed  CAS  Google Scholar 

  22. de Laat W, Grosveld F. Inter-chromosomal gene regulation in the mammalian cell nucleus. Curr Opin Genet Dev. 2007;17:456–64.

    Article  PubMed  CAS  Google Scholar 

  23. Guillemin C, Maleszewska M, Guais A, et al. Chromatin modifications in hematopoietic multipotent and committed progenitors are independent of gene subnuclear positioning relative to repressive compartments. Stem Cells. 2009;27:108–15.

    Article  PubMed  CAS  Google Scholar 

  24. Mateos-Langerak J, Goetze S, Leonhardt H, Cremer T, van Driel R, Lanctot C. Nuclear architecture: Is it important for genome function and can we prove it? J Cell Biochem. 2007;102:1067–75.

    Article  PubMed  CAS  Google Scholar 

  25. Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature. 1998;394:592–5.

    Article  PubMed  CAS  Google Scholar 

  26. Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol. 2008;180:51–65.

    Article  PubMed  CAS  Google Scholar 

  27. Finlan LE, Sproul D, Thomson I, et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 2008;4:e1000039.

    Article  PubMed  CAS  Google Scholar 

  28. Ruault M, Dubarry M, Taddei A. Re-positioning genes to the nuclear envelope in mammalian cells: impact on transcription. Trends Genet. 2008;24:574–81.

    Article  PubMed  CAS  Google Scholar 

  29. Meaburn KJ, Misteli T. Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol. 2008;180:39–50.

    Article  PubMed  CAS  Google Scholar 

  30. Meaburn KJ, Gudla PR, Khan S, Lockett SJ, Misteli T. Disease-specific gene repositioning in breast cancer. J Cell Biol. 2009;187:801–12.

    Article  PubMed  CAS  Google Scholar 

  31. Marella NV, Bhattacharya S, Mukherjee L, Xu J, Berezney R. Cell type specific chromosome territory organization in the interphase nucleus of normal and cancer cells. J Cell Physiol. 2009;221:130–8.

    Article  PubMed  CAS  Google Scholar 

  32. Rival-Gervier S, Thepot D, Jolivet G, Houdebine LM. Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. Biochim Biophys Acta. 2003;1627:7–14.

    PubMed  CAS  Google Scholar 

  33. Rijnkels M, Wheeler DA, de Boer HA, Pieper FR. Structure and expression of the mouse casein gene locus. Mamm Genome. 1997;8:9–15.

    Article  PubMed  CAS  Google Scholar 

  34. Ballester M, Kress C, Hue-Beauvais C, et al. The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem. 2008;105:262–70.

    Article  PubMed  CAS  Google Scholar 

  35. Montazer-Torbati MB, Hue-Beauvais C, Droineau S, et al. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Exp Cell Res. 2008;314:975–87.

    Article  PubMed  CAS  Google Scholar 

  36. Volpi EV, Chevret E, Jones T, et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci. 2000;113:1565–76.

    PubMed  CAS  Google Scholar 

  37. Williams RR, Broad S, Sheer D, Ragoussis J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res. 2002;272:163–75.

    Article  PubMed  CAS  Google Scholar 

  38. Morey C, Da Silva NR, Perry P, Bickmore WA. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development. 2007;134:909–19.

    Article  PubMed  CAS  Google Scholar 

  39. Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453:948–51.

    Article  PubMed  CAS  Google Scholar 

  40. Grigoryev SA, Bulynko YA, Popova EY. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Res. 2006;14:53–69.

    Article  PubMed  CAS  Google Scholar 

  41. Lelievre SA, Weaver VM, Nickerson JA, et al. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci U S A. 1998;95:14711–6.

    Article  PubMed  CAS  Google Scholar 

  42. Chaly N, Munro SB. Centromeres reposition to the nuclear periphery during L6E9 myogenesis in vitro. Exp Cell Res. 1996;223:274–8.

    Article  PubMed  CAS  Google Scholar 

  43. Brero A, Easwaran HP, Nowak D, et al. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol. 2005;169:733–43.

    Article  PubMed  CAS  Google Scholar 

  44. Stadler S, Schnapp V, Mayer R, et al. The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol. 2004;5:44.

    Article  PubMed  CAS  Google Scholar 

  45. Marella NV, Seifert B, Nagarajan P, Sinha S, Berezney R. Chromosomal rearrangements during human epidermal keratinocyte differentiation. J Cell Physiol. 2009;221:139–46.

    Article  PubMed  CAS  Google Scholar 

  46. Chaumeil J, Le Baccon P, Wutz A, Heard E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 2006;20:2223–37.

    Article  PubMed  CAS  Google Scholar 

  47. Chepko G, Smith GH. Mammary epithelial stem cells: our current understanding. J Mammary Gland Biol Neoplasia. 1999;4:35–52.

    Article  PubMed  CAS  Google Scholar 

  48. Lelievre SA. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. Biochim Biophys Acta. 2009;1790:925–35.

    PubMed  CAS  Google Scholar 

  49. Schotta G, Lachner M, Sarma K, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18:1251–62.

    Article  PubMed  CAS  Google Scholar 

  50. Arney KL, Fisher AG. Epigenetic aspects of differentiation. J Cell Sci. 2004;117:4355–63.

    Article  PubMed  CAS  Google Scholar 

  51. Martens JH, O'Sullivan RJ, Braunschweig U, et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo J. 2005;24:800–12.

    Article  PubMed  CAS  Google Scholar 

  52. Biron VL, McManus KJ, Hu N, Hendzel MJ, Underhill DA. Distinct dynamics and distribution of histone methyl-lysine derivatives in mouse development. Dev Biol. 2004;276:337–51.

    Article  PubMed  CAS  Google Scholar 

  53. Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003;12:1577–89.

    Article  PubMed  CAS  Google Scholar 

  54. Zinner R, Albiez H, Walter J, Peters AH, Cremer T, Cremer M. Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones. Histochem Cell Biol. 2006;125:3–19.

    Article  PubMed  CAS  Google Scholar 

  55. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278:440–58.

    Article  PubMed  CAS  Google Scholar 

  56. Stadler F, Kolb G, Rubusch L, Baker SP, Jones EG, Akbarian S. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem. 2005;94:324–36.

    Article  PubMed  CAS  Google Scholar 

  57. Terranova R, Sauer S, Merkenschlager M, Fisher AG. The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res. 2005;310:344–56.

    Article  PubMed  CAS  Google Scholar 

  58. Payne C, Braun RE. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol. 2006;293:461–72.

    Article  PubMed  CAS  Google Scholar 

  59. Barski A, Zhao K. Genomic location analysis by ChIP-Seq. J Cell Biochem. 2009;107:11–8.

    Article  PubMed  CAS  Google Scholar 

  60. Wang Z, Schones DE, Zhao K. Characterization of human epigenomes. Curr Opin Genet Dev. 2009;19:127–34.

    Article  PubMed  CAS  Google Scholar 

  61. Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics. 2009;10:143.

    Article  PubMed  CAS  Google Scholar 

  62. Su RC, Brown KE, Saaber S, Fisher AG, Merkenschlager M, Smale ST. Dynamic assembly of silent chromatin during thymocyte maturation. Nat Genet. 2004;36:502–6.

    Article  PubMed  CAS  Google Scholar 

  63. Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev. 2000;14:940–50.

    PubMed  CAS  Google Scholar 

  64. Talasz H, Lindner HH, Sarg B, Helliger W. Histone H4-lysine 20 monomethylation is increased in promoter and coding regions of active genes and correlates with hyperacetylation. J Biol Chem. 2005;280:38814–22.

    Article  PubMed  CAS  Google Scholar 

  65. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003;8:287–307.

    Article  PubMed  Google Scholar 

  66. Dillon N, Festenstein R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 2002;18:252–8.

    Article  PubMed  CAS  Google Scholar 

  67. Bissell MJ, Weaver VM, Lelievre SA, Wang F, Petersen OW, Schmeichel KL. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 1999;59:1757–1763s. discussion 1763s–1764s.

    PubMed  CAS  Google Scholar 

  68. Plachot C, Lelievre SA. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium. Exp Cell Res. 2004;298:122–32.

    Article  PubMed  CAS  Google Scholar 

  69. Le Beyec J, Xu R, Lee SY, et al. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res. 2007;313:3066–75.

    Article  PubMed  CAS  Google Scholar 

  70. Kaminker P, Plachot C, Kim SH, et al. Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. J Cell Sci. 2005;118:1321–30.

    Article  PubMed  CAS  Google Scholar 

  71. Chandramouly G, Abad PC, Knowles DW, Lelievre SA. The control of tissue architecture over nuclear organization is crucial for epithelial cell fate. J Cell Sci. 2007;120:1596–606.

    Article  PubMed  CAS  Google Scholar 

  72. Chen LH, Bissell MJ. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1989;1:45–54.

    PubMed  CAS  Google Scholar 

  73. Jolivet G, Pantano T, Houdebine LM. Regulation by the extracellular matrix (ECM) of prolactin-induced alpha s1-casein gene expression in rabbit primary mammary cells: role of STAT5, C/EBP, and chromatin structure. J Cell Biochem. 2005;95:313–27.

    Article  PubMed  CAS  Google Scholar 

  74. Xu R, Spencer VA, Bissell MJ. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem. 2007;282:14992–9.

    Article  PubMed  CAS  Google Scholar 

  75. Kabotyanski EB, Rijnkels M, Freeman-Zadrowski C, Buser AC, Edwards DP, Rosen JM. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements. J Biol Chem. 2009;284:22815–24.

    Article  PubMed  CAS  Google Scholar 

  76. Voss TC, Hager GL. Visualizing chromatin dynamics in intact cells. Biochim Biophys Acta. 2008;1783:2044–51.

    Article  PubMed  CAS  Google Scholar 

  77. Chubb JR, Boyle S, Perry P, Bickmore WA. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol. 2002;12:439–45.

    Article  PubMed  CAS  Google Scholar 

  78. Sinha DK, Banerjee B, Maharana S, Shivashankar GV. Probing the dynamic organization of transcription compartments and gene loci within the nucleus of living cells. Biophys J. 2008;95:5432–8.

    Article  PubMed  CAS  Google Scholar 

  79. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell. 1999;3:207–17.

    Article  PubMed  CAS  Google Scholar 

  80. Parada LA, McQueen PG, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5:R44.

    Article  PubMed  Google Scholar 

  81. Bickmore WA, Chubb JR. Dispatch. Chromosome position: now, where was I? Curr Biol. 2003;13:R357–359.

    Article  PubMed  CAS  Google Scholar 

  82. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10:192–206.

    Article  PubMed  CAS  Google Scholar 

  83. Williams RR, Azuara V, Perry P, et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci. 2006;119:132–40.

    Article  PubMed  CAS  Google Scholar 

  84. Lemay DG, Neville MC, Rudolph MC, Pollard KS, German JB. Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst Biol. 2007;1:56.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Christine Longin for performing electron microscopy studies and Violeta Chen for her assistance with the analysis of mouse mammary gland tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémence Kress.

Additional information

Acknowledgement of financial support: Dr. M. Ballester has been financially supported by contract from the Juan de la Cierva program from the Spanish Ministry of Science and Innovation. INRA-292 and P00258 to Eve Devinoy, and USDA/ARS 6250-51000-048-00, and Department of Defense Breast Cancer Research Program W81XWH-05-01-0456 to Monique Rijnkels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kress, C., Ballester, M., Devinoy, E. et al. Epigenetic Modifications in 3D: Nuclear Organization of the Differentiating Mammary Epithelial Cell. J Mammary Gland Biol Neoplasia 15, 73–83 (2010). https://doi.org/10.1007/s10911-010-9169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-010-9169-x

Keywords

Navigation