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Abstract Macrophage influx is associated with negative
outcomes for women with breast cancer and has been
demonstrated to be required for metastasis of mammary
tumors in mouse models. Pregnancy-associated breast cancer
is characterized by particularly poor outcomes, however the
reasons remain obscure. Recently, post-pregnancy mammary
involution has been characterized as having a wound healing
signature. We have proposed the involution-hypothesis,
which states that the wound healing microenvironment of
the involuting gland is tumor promotional. Macrophage
influx is one of the prominent features of the involuting
gland, identifying the macrophage a potential instigator of

tumor progression and a novel target for breast cancer
treatment and prevention.
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Introduction

Components of chronic inflammation are common in the
microenvironment of many cancers and further, inflamma-
tion is associated with initiation and promotion of specific
cancers, such as colorectal, gastric, liver and breast [1]. In
cancer-related inflammation, immune cell infiltration is
associated with rampant cytokine/chemokine signaling,
protease-mediated tissue remodeling and angiogenesis,
constituents known to accelerate tumor progression [2, 3].
While the cellular milieu of cancer-related inflammation is
complex, in breast cancer the presence of macrophages
specifically predicts poor prognosis [4]. Importantly, data
from several studies suggest that macrophages and
associated wound healing programs may be integral to
weaning-induced mammary gland involution [5–10]. Thus,
physiologic gland regression after pregnancy is implicated
in tumor promotion [11]. Consistent with this hypothesis, a
subset of breast cancer defined by patients diagnosed within
5 years of a recent pregnancy is associated with poor
prognosis [11]. This subset is referred to as pregnancy-
associated breast cancer or PABC. We propose the
involution-hypothesis to account for the highly metastatic
nature of PABC. The involution-hypothesis predicts that the
wound healing attributes of mammary involution contribute
to a tumor promotional microenvironment, characterized by
increases in protease activity, release of bioactive fragments
of extracellular matrix, and accumulation of fibrillar and
proteolyzed collagen [11]. These involution-associated
changes in the mammary microenvironment are consistent
with macrophage function and implicate macrophage
involvement in promotion of PABC metastasis. In support
of the involution-hypothesis, numerous attributes of the

actively involuting mammary microenvironment have been
demonstrated in preclinical models to induce metastatic
phenotypes in tumor cells [5–7, 12]. The focus of this
review is to explore the possible roles for involution
macrophages in promoting breast cancer.

Evidence for Macrophage Involvement in Breast
Cancer

Macrophages have been positively correlated with poor
prognosis of breast cancer in multiple studies. The subset
of macrophages found in close proximity to tumors have
been referred to as tumor-associated or TAM. Importantly,
TAM can contribute significantly to the cellular bulk of the
tumor, implicating these cells in dictating tumor biology. In
some cases, TAM have been reported to account for as much
as 50% of the tumor mass [13]. Tumor macrophage
infiltration is linked to significant decreased relapse-free
survival (Hazard Ratio = 2.79) and overall survival (Hazard
Ratio = 9.43) [14]. For comparison, hazard ratios for tumor
size, a known negative prognostic indicator, were 2.48 for
relapse-free survival and 1.09 for overall survival in the same
cohort [14]. Increased TAM density is also associated with
early establishment of breast cancer metastases [14, 15].
Consistent with these observations, in a meta-analysis of 15
studies that correlate TAM with cancer prognosis, 80%
correlated high levels of TAM with negative outcomes for
cancer patients, with all four of the included breast cancer
studies demonstrating this relationship [4]. Given that
distinct cytokine milieus can elicit macrophages with either
tumor suppressive or tumor promotional activities; this may
explain why tumor macrophage number does not always
correlate with negative outcome. The concept that macro-
phages can be either tumor suppressive or promotional will
be explored later in this review.

Specific proteins involved in macrophage growth and
recruitment have also been implicated as predictors of poor
prognosis in breast cancer. Colony stimulating factor 1 (CSF-
1) is a growth factor that stimulates macrophage proliferation
and maturation and is also chemotactic for macrophages [16,
17]. Overexpression of CSF-1 at the RNA and protein levels
has been observed at sites of primary breast cancer [18]. In
addition, mean plasma CSF-1 levels were 8% to 24% higher
in breast cancer patients with locally advanced (388.3 pg/ml)
or metastatic disease (446.1 pg/ml) as compared to those
with in situ carcinoma (358.6 pg/ml), implicating macro-
phages in the transition from non-invasive to invasive
disease [19]. High circulating CSF-1 levels also correlate
strongly with rapid progression of metastatic disease and
CSF-1 continues to be expressed higher at locations of
metastatic recurrence [20]. In five breast cancer expression
data sets, a CSF-1 response signature was found to correlate
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with other predictors of poor prognosis including estrogen
and progesterone receptor negative status, higher tumor
grade and larger size [21]. Monocyte chemotactic protein 1
(MCP-1), another protein known to attract macrophages,
correlates both with macrophage accumulation in breast
tumors and early relapse in patients [22]. These studies
indicate that macrophages stimulate tumor cells directly, and/
or tumor cells are responsive to these same stimuli as
macrophages.

A survey of the available human breast cancer data
reveals direct paracrine signaling between macrophages and
tumor cells. Macrophages isolated from human breast tumors
have been shown to release epithelial growth factor (EGF),
and tumors that express high EGF receptor (EGFR) protein
levels have increased macrophage infiltration [23, 24]. High
tumor expression of EGFR is an independent predictor of
negative prognosis in women, suggesting the importance of
this paracrine signaling pathway in breast cancer [25]. A
prediction of this model would be increased tumor cell
proliferation with macrophage infiltrate. Indeed, macrophage
infiltration does correlate with tumor cell proliferation in
breast cancer, as assessed by Ki-67 levels [15]. This EGF/
EGFR paracrine signaling is complimented with tumor cell
production of CSF-1, which directly stimulates macrophages
via the macrophage receptor CSF-1R [26]. The result is an
apparent complete paracrine signaling loop between macro-
phages and tumor cells. Suitably, overexpression of CSF-1 in
tumor cells independently indicates poor outcomes in breast
cancer [27]. Further, CSF-1R has been reported to be
expressed in 58% of all and 85% of invasive breast cancers,
where both stromal macrophages and neoplastic epithelial
cells stain positive [28]. An antibody to activated CSF-1R
shows that 52% of CSF-1R positive breast carcinomas
expressed the activated form of the receptor [29]. In addition,
in preclinical models, it has been shown that tumor cells can
commandeer the production of EGF leading to autocrine
stimulation of EGFR [30]. Thus, it appears that not only is
there evidence for direct macrophage-cancer cell paracrine
signaling interactions in human breast cancer, but for
autocrine CSF-1/CSF-1R and EGF/EGFR signaling in breast
tumor cells as well. Altogether, macrophage infiltration,
macrophage growth and chemotactic factors, and macro-
phage signaling pathways are all correlated with negative
outcome for breast cancer patients.

Mouse Models: Interaction of Macrophages and Breast
Cancer

Although clinical studies strongly implicate a relationship
between macrophages and breast cancer progression, this
interaction has been thoroughly established by J. Pollard and
colleagues using mouse models. The mouse model of breast

cancer in these studies is induced by polyoma middle T
oncoprotein driven by the mammary specific MMTV
promoter (MMTV-PyMT). In this model, the depletion of
macrophages though a homozygous null germline mutation
for CSF-1 resulted in decreased rates of tumor progression
and an almost complete reduction in tumor metastasis [31].
When CSF-1 was transgenically re-expressed in the mam-
mary epithelium of the CSF-1 null/MMTV-PyMT mice, both
tumor growth and metastasis were restored [31]. Consistent
with these observations, when CSF-1 was overexpressed in
MMTV-PyMT mice tumor progression and metastasis were
significantly accelerated [31]. To determine whether human
breast tumor cells were similarly responsive to macrophages,
human tumor cells were injected into mouse mammary
glands and CSF-1/CSF-1R signaling blocked using antisense
oligonucleotides, siRNAs and antibody against CSF-1. All
three techniques for CSF-1 ablation lead to reduced
macrophage recruitment to the tumor microenvironment,
and a decrease in tumor growth and metastasis [32, 33].
Finally, micro-needle manipulation in conjunction with
intravital imaging of fluorescently labeled cells in these
models have provided additional evidence for a paracrine
EGF/CSF-1 loop between macrophages and mammary
tumor cells [26, 34]. Cumulatively, these preclinical studies
in multiple models of breast cancer highlight a promotional
role for macrophage growth factor CSF-1, and provide a
plausible explanation for the clinical correlation between
breast cancer prognosis and tumor associated macrophages.

Macrophages in the Pubertal and Pregnancy Stages
of Mammary Gland Development

Due to the accumulating evidence that macrophages promote
breast cancer, it is natural to evaluate the involvement of
macrophages in the mammary gland in the absence of
cancer. Specifically, it is of interest to know whether
macrophage number is regulated during key developmental
windows. During post-natal development of the gland,
macrophages are recruited to growing terminal end buds
(TEBs) [35]. To address their function during TEB out-
growth, leukocytes were depleted by sub-lethal γ irradiation,
or macrophages were selectively eliminated using the CSF-1
homozygous null mice. These studies show that leukocytes,
and specifically macrophages, are necessary for proper
development and outgrowth of TEBs into the mammary fat
pad and for subsequent TEB bifurcation [35]. It is speculated
that that these macrophages contribute to ductal invasion
through release of factors that promote growth, angiogenesis
and extracellular matrix (ECM) breakdown, however, the
mechanism remains undefined [35, 36]. Macrophages are
also present during pregnancy, another period of epithelial
expansion in the mammary gland [37]. Again, as in puberty,
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CSF-1 knockout results in reduced ductal growth and
decreased branching in the mammary glands of pregnant
mice [38]. However, these mice also have precocious lobulo-
alveolar development, implicating macrophages as inhibitory
to alveolar expansion in mice. Clearly these studies
demonstrate that macrophage function contributes to mam-
mary morphogenesis during key windows of differentiation,
but much remains to be determined regarding their specific
functions and mechanisms of action.

The Involuting Mammary Gland

Our understanding of macrophage function during weaning-
induced mammary involution is poorly developed. With
cessation of milk secretion, the mammary gland resorbs the
elaborate milk-producing lobulo-alveolar structures of preg-
nancy and returns to a simpler ductal network poised to
respond to another round of pregnancy hormones [39, 40].
The magnitude and speed of this tissue deconstruction is
dramatic and considered unique to the mammary gland, as
this physiologic tissue remodeling exceeds that which occurs
under many pathological conditions. In rodents, where
mammary involution has been extensively characterized, a
full 50–80% of the secretory epithelium is eliminated by
apoptosis and clearance within one week of weaning [41].
By 10 days post weaning, the gland is largely devoid of
alveolar structures, and is dominated by a ductal epithelium
embedded in an adipocyte rich stroma.

The process of mammary gland involution is an
intrinsically regulated developmental program consisting
of several ordered events. Early on it was recognized that
involution could be separated into reversible and irrevers-
ible phases based on the ability of dams to resume nursing
after pup removal [42, 43]. The reversible phase was
characterized as proteinase-independent and corresponds
with the early wave of secretory epithelial cell death prior
to histological evidence of alveolar collapse [44]. The
irreversible phase or proteinase-dependent phase, correlates
with histological evidence of alveolar destruction, and was
determined to involve the matrix metalloproteinases gelat-
inase A (MMP-2), stromelysin 1 (MMP-3) and the serine
protease urokinase-type plasminogen activator (uPA) [44].
In this study, macrophages detected by Mac-2 immunohis-
tochemical (IHC) stain were found to be rare during the
protease-independent phase, but present at high levels
during the protease-dependent phase [44]. By in situ
hybridization, the macrophages did not appear to be major
producers of MMP-2,−9 or uPA, and thus it was speculated
that the macrophages were not involved in induction of
mammary epithelial cell apoptosis, but rather in scavenging
apoptotic debris [44]. Cluster analyses of microarray studies
have provided evidence that involution is more complex

than the two stage model, with gene expression patterns
consistent with a multi-step process [45]. Some additional
events associated with involution, of which potential roles
of macrophages are currently unknown include adipocyte
repopulation [46] and the transient ECM changes that occur
during late involution and which may be associated with
ductal stabilization [6].

Given that macrophages are professional phagocytes, it
was anticipated that their role in involution would include
the clearance of the dying alveolar cells. However, macro-
phages and other immune cells were found to be at very
low levels during the peak window of apoptotic cell and
milk clearance in C57BL/6 mice [47, 48]. Instead, as shown
by elegant studies performed in the labs of Fadok and
Henson, mammary epithelial cells were discovered to
become amateur phagocytes responsible for cell and milk
clearance, leaving the role of the involution-associated
macrophages undefined (see Monks and Henson review,
this issue) [47, 48]. The observation that mammary
epithelial cells appear to fulfill the role of phagocytes
during involution helped solidify the view that develop-
mentally regulated mammary involution is not immune cell
mediated.

Evidence of Immune Cell Involvement in Involution

Based on the considerable evidence for involution being a
non-inflammatory process, it was surprising when gene
expression data obtained from mouse studies identified
numerous immune-related genes upregulated in the involut-
ing mammary gland [9, 10]. In these studies, acute phase
response genes, as well as gene profiles associated with
innate and adaptive cellular immunity, increased with
involution [9, 10]. An early gene set, upregulated within
12 h post-weaning, included genes for the inflammatory
mediators interleukin-1α, interleukin-1β, and interleukin-13,
which are associated with macrophage, T cell and B cell
activation [9, 10]. Consistent with these gene expression
profiles, the presence of plasma cells was reported to
increase over 20 fold by involution day 4 [10]. Bacteria
would be anticipated to trigger such a robust humoral
microbial response, however there was no evidence for
bacteria by Gram staining, suggesting a possible role for
sterile inflammation in physiologic mammary involution.

In addition to implications for T and B cell involvement,
innate immune cell genes were upregulated during involu-
tion [10]. Neutrophil chemoattractant gene growth-related
oncogene 1 (GRO-1) expression was increased ~5 fold
within the first 24 h post-weaning, with concurrent
increased expression of neutrophilic granulocyte marker
leucine-rich α2-glycoprotein (LRG) at 24–48 h, prior to
macrophage influx at 72 h [44]. Histochemical analysis
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confirmed an increase in number of neutrophils as early as
24 h post weaning, with numbers steadily increasing
through day 4 [10].

Many genes involved in macrophage recruitment and
activation are upregulated at the RNA and protein levels
during involution. A wave of gene expression that increases
early at 24 h post-weaning consisted of several chemo-
attractants for monocytes and macrophages including
CCL6, CCL7, CCL8, and CXCL14 [9, 10]. Several
monocyte attracting cytokines, including CCL6 and mac-
rophage inflammatory protein-1α (MIP-1α) have been
shown to be secreted by neutrophils, so it is noteworthy
that neutrophils have been reported to populate the
involuting gland prior to macrophages [49, 50]. Next, the
monocyte/macrophage specific antigens CSF-1R, CD68,
low density lipoprotein-related protein 1 (LRP-1) and
CD14 were found at high levels at 72 and 96 h post-
weaning, consistent with macrophage influx [9, 10]. These
results corroborated previous RNA expression data for
macrophage markers F4/80 and Mac-2 [51]. IHC analyses
for several of these macrophage associated proteins have
validated the RNA expression data and demonstrate
presence of macrophages in the late involuting mouse
mammary gland (Table 1) [10, 44, 47, 52–54]. These
observations have been extended to the rat model [8], and
further, preliminary data from T. Lyons and Schedin
demonstrate infiltration of CD45+ leukocytes into the
involuting lobules of the human breast as well (Fig. 1).
While the exact roles of the macrophages during involution
are currently unknown, cumulatively the data support the
hypothesis that mammary gland involution utilizes macro-
phages in a remodeling process that is distinct from
pathologic tissue remodeling such as occurs with microbial
stimuli or wound healing.

A Macrophage is not a Macrophage is not
a Macrophage…

Monocytes are a dynamic group of cells that can mature
across a spectrum of phenotypes depending on what signals
are found in their environment (Table 2). Further, this
maturation is thought to be reversible, permitting the tissue
macrophage to respond appropriately to new stimuli.
Classically, monocytes respond to stimuli involved in
eliciting an immune response to intracellular pathogens
including bacterial wall protein lipopolysaccharide (LPS),
and the cytokines interferon-γ (IFN-γ), interleukin-1β
(IFN-β), and tumor necrosis factor-α (TNF-α) [55]. These
are the same signals involved in inducing a Th1-response in
T cells and thus monocytes stimulated by these activators
have been referred to as M1 macrophages. This Th1/M1
cellular immune reaction is characterized by activated
cytotoxic T-lymphocytes and macrophages that target
infected tissues. Classically activated, or M1-type, macro-
phages, typically release high levels of interleukin-12 (IL-
12), interleukin-23 (IL-23), interleukin-1 (IL-1) and
interlekin-6 (IL-6), cytokines known to enforce the Th1
response [55, 56]. Activities associated with an M1
macrophage include antigen presentation, killing intracel-
lular pathogens, and promotion of cytotoxicity [55].
Importantly, these M1 activities set up an anti-tumoral
environment [57, 58].

The nomenclature for macrophage polarization described
above, has been proposed by Mantovani and colleagues to
define classes of macrophages other than the M1 type.
Their focus has been on macrophages with phenotypes
distinct from classical M1-type, which are referred to as
M2-type or alternatively activated. This alternative activa-
tion pathway was originally described as macrophages

Table 1 Macrophage IHC markers.

Mouse Mammary Gland Immunohistochemistry

MΦ
Marker

Involution Trend Reference

Mac-2 Increased expression at Inv D3 compared
to Lactation, continues to increase through
Inv D10

[44]

F4/80 Increased at Inv D4 compared to Pregnancy [54]

F4/80 Increased at Inv D3 in surrounding
connective tissue and in the gland at
Inv D4 compared to Lactation

[10]

CD11b Increased at Inv D4 compared to Inv D1 [53]

CD68 No expression in Lactation, detected at Inv
D2, Increased expression with Involution,
up to 14.2% of total cell number at Inv D4.
These cells also expressed Mac-1
and F4/80

[52]

F4/80 Increased at Inv D4 compared to Lactation [47]

Lactating

Involuting
CD45

Figure 1 CD45 positive cell number increases in actively involuting
lobules compared to adjacent lactating lobules in human breast.
Immunohistochemical stain for CD45 (common leukocyte antigen) in
breast tissue at time of weaning. CD45+ cells, detected by brown
stain, are present at higher levels in actively involuting lobule
identified by collapsed alveoli compared to actively lactating lobule
identified by extended milk-filled alveoli. Scale bar represents 100µm.
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stimulated by pathogens presented by extracellular path-
ways, including parasitic and allergic responses. The broad
M2 category originally included macrophages activated by
interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-
10 (IL-10). Gordon et al. 2003 voiced a preference that only
the IL-4/IL-13 stimulated macrophages be referred to as
alternatively activated. These IL-4/IL-13 stimulated macro-
phages, further categorized as M2a by Mantovani et al.
2004, fit in the group of immune cells that respond to Th2
cytokines. IL-4 and IL-13, in a Th2-response, elevate
humoral immunity through increased proliferation and
activation of B cells into plasma cells that secrete high
levels of antibody. Alternatively activated macrophages are
involved in the killing and encapsulation of parasites, in
allergic reactions, and in tissue repair associated with
wound healing [55, 56, 59].

Two additional categories of macrophages have now
been delineated, both involved in immunoregulation. M2b
macrophages are stimulated by a combination of immune
complexes and toll-like receptors (TLR) [55]. These macro-
phages promote Th2 activation yet secrete a combination of
M2 and M1 cytokines including IL-10, IL-1, IL-6 and
TNF-α [55]. In contrast, M2c macrophages are activated by
and stimulated to produce IL-10 and tumor growth factor-β
(TGF-β), both immunosuppressive cytokines [55, 59]. A
primary action of M2c macrophages is inhibition of the
Th1/M1 response program [55, 60]. M2c macrophages also
down-regulate MHC Class II molecules used for antigen
presentation, and are therefore additionally distinct from the
alternatively activated M2a and M2b categories, which can
present antigen [55, 59]. Further, M2c macrophages can
contribute to matrix deposition and tissue remodeling,
which is likely mediated through their upregulation of
TGF-β [55, 61]. Recent reviews of the M1/M2 continuum
show that M2 macrophages share similar cytokine profiles
and activities with tumor associated macrophages (TAM),
suggesting that M2 macrophages are tumor promotional
[57, 58]. TAM and M2 macrophages both secrete IL-10,
TGF-β, MMPs, and growth factors that collectively can
lead to direct immunosuppression via IL-10, matrix
remodeling, angiogenesis, and even tumor growth, inva-
sion, and metastasis.

Other researchers have recently modeled macrophage
sub-types into a non-linear spectrum [56]. The functional
attributes of the three categories of macrophages they
define; host defense, wound healing and immune regula-
tion, do not directly align with the classification described
above. Given macrophage plasticity, these classification
schemas are designed to organize the widely diverse set of
functional phenotypes that macrophages display as best as
possible using current knowledge. Therefore, differences
between classification schemes are to be expected in this
rapidly progressing field. Even the proteins commonly used
to distinguish all monocytes and macrophages from other
leukocyte lineages need to be evaluated with caution. New
flow cytometry data show that ‘pan’ macrophage markers
CSF-1R and F4/80 identify two distinct, minimally over-
lapping macrophage populations (M. Pillai, unpublished
data). Work by others have shown distinct populations of
macrophages identified by non-overlapping expression of
CD68, CD11b, and F4/80 [62–65]. In addition, we have
observed in the rat mammary gland that CSF1-R and CD68
recognize different macrophage populations (O’Brien &
Schedin, unpublished data). Whether these provocative data
suggest that these pan-macrophage markers coincide with
the M1/M2 sub-categories is an interesting, but unresolved
question. Overall, these macrophage classification schemas
can be well used as intellectual constructs with which to
test specific hypotheses.

Are Involution Macrophages a Specific Subtype?

While numerous studies have now confirmed the influx of
macrophages during mammary involution, the question of
whether these macrophages are ‘polarized’ into distinct
sub-types has not been addressed. Given the relationship
between macrophage polarization and tumor cell surveil-
lance, it is important to determine functional attributes of
involution macrophages. Our lab has started to investigate
the functional phenotype of involution macrophages by
assessing for traditional M1/M2 markers [60]. Using iNOS
(inducible nitric oxide synthase) as an M1 marker and
Arginase-1 as an M2 marker, our IHC analyses show that

Table 2 Spectrum of macrophage phenotypes.

Classically
Activated/M1

Alternatively
Activated/M2a

M2b M2c

Prominent Cytokines IL-12, IL-23, IL-1, IL-6 IL-4, IL-13 IL-10, TNF-α, IL-1, IL-6 IL-10, TGF-β

Immune Role Th1 Response Th2 Response Th2/ Immunosuppression Immmunosuppression

ECM Synthesis no yes unknown yes

Wound Healing/ Tissue Repair no yes unknown yes

Tumor Promotional no probable unknown probable

150 J Mammary Gland Biol Neoplasia (2009) 14:145–157



while M1 macrophage levels stay consistently low across
the pregnancy/lactation/involution cycle, M2-macrophage
number increases 4–6 fold above nulliparous levels during
mammary gland involution in both mouse and rat models
(Fig. 2 and O’Brien & Schedin, unpublished data).
Comprehensively, these data indicate that macrophages
are not only present during the physiologically normal
period of mammary involution, but have an M2-like
phenotype that could exhibit pro-cancer attributes. What
follows is a discussion of specific attributes of mammary
gland involution that macrophages may facilitate, which are
anticipated to promote cancer.

Production and Release of Proteolytic Enzymes

Dramatic tissue remodeling occurs during mammary gland
involution, with breakdown of alveolar structures and their
surrounding extracellular matrix (ECM) [66, 67]. Stromal
matrix metalloproteinases (MMP) levels and activity
increase during involution, including MMP-2, −3 and −9
in the rat and 130K and 60K gelatinases in the mouse [6,
66, 68]. These observations are consistent with known
functions of macrophages, where upregulation of several
proteolytic enzymes including collagenases and serine
proteases occur in response to endotoxin, thioglycollate,
and CCL5 stimulation [69–75]. ECM proteins proteolyzed
during involution include fibronectin, laminin, entactin/
nidogen and collagen [6, 76] (O’Brien & Schedin,

unpublished data). Laminin peptides are chemotactic to
macrophages both in vitro and in vivo, and can promote
expression of uPA and MMP-9, whereas fibronectin frag-
ments trigger monocyte/macrophage secretion of MMP-2,
−9 and −12 [77–81]. Thus, a positive feedback loop may
exist between resident macrophages stimulated to secrete
matrix proteinases resulting in ECM fragments that subse-
quently recruit and stimulate additional macrophages.
Given the putative roles of MMPs in breast cancer
progression, the secretion of proteases by macrophages
during the involution period is likely tumor promotional
[82]. Consistent with this role, macrophages co-cultured
with breast tumor cells increase expression and activity of
MMP-2, −3, −7 and −9 [83]. Further, macrophages located
at the invasive front of breast tumors show positive IHC
stain for Type IV collagenases and cathepsin B [84, 85].
Since many ECM fragments promote tumor cell motility
and invasion in vitro, the production of ECM fragments via
macrophage protease activity during involution is consis-
tent with a similar role in breast cancer progression [5, 86].

Breakdown of Basement Membrane

The myoepithelial cell and basement membrane barrier that
surrounds the mammary epithelium throughout pregnancy
and lactation has been reported to be compromised during
mammary gland involution, an event in which macrophages
could be involved and of which tumor cells could take
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Figure 2 Use of M1/M2-spe-
cific macrophage markers by
IHC identifies involution mac-
rophages as M2-like. Immuno-
histochemical stain and
quantification for iNOS (M1) or
Arginase-1 (M2) in rat mamma-
ry tissue at Involution Day 6.
Arginase-1 positive (M2) mac-
rophage number is high during
involution whereas iNOS posi-
tive (M1) macrophage number
remains low in rat mammary
tissue, *p< 0.01. Scale bars
represent 50µm.
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advantage. Electron microscopy (EM) of involuting rat
mammary glands has shown that myoepithelial cells are not
always in a continuous layer but can interdigitate with
nearby epithelial cells [87]. During involution in the rat and
human, EM analysis reveals the basement membrane as
convoluted with variable thickness, while IHC analyses of
basement membrane proteins laminin and type IV collagen
show both loose structure and discontinuous areas [67, 87,
88]. Further, a diffuse stain of these proteins is observed
throughout the tissue suggesting basement membrane
degradation [67]. These data provide indirect evidence for
interruption of this functional barrier during mammary
gland involution.

Breakdown of the myoepithelial and basement membrane
layers is the hallmark of local invasion from ductal
carcinoma in situ (DCIS) to invasive breast carcinoma.
Macrophages are implicated in promoting this proteolysis
due to both their location at points of basement membrane
breakdown early in tumorigenesis and their release of
proteases that digest basement membrane proteins [69–75,
89]. Further, macrophages are enriched at the invasive fronts
of mouse tumors, implicating a role in tumor cell invasion
[90]. We propose that further investigation may reveal a role
for macrophages in basement membrane breakdown during
involution, and that in the presence of DCIS during
involution, macrophages could foster the activation and
dissemination of previously quiescent tumor cells.

Cell Movement along Collagen Fibers

The increase in fibrillar collagen with involution could serve
as a means of transportation for the dissemination of
macrophages and associated tumor cells. Collagen content,
as assessed by picro-sirius red stain, increases in the rat
mammary gland during involution compared to nulliparous
controls [7]. Collagen fibers can be imaged due to the
resonant emission of polarized light from triple α-helical
structures called second harmonic generation (SHG) using
multi-photon microscopy [91, 92]. With SHG visualization
and intravital imaging techniques, eGFP expressing macro-
phages have been observed to co-localize and move along
collagen fibers [93]. In the MMTV-PyMT model, macro-
phages are associated with the dense collagen fibers found at
the mammary/tumor margin [94]. Intravital imaging revealed
that ~90 % of motile tumor cells associate with macrophages
whereas only ~10% of the tumor cells were found to be
motile in the absence of macrophages. Importantly, these
macrophages were often perivascular, suggesting a mecha-
nisms for tumor cell intravasation [94]. With increased levels
of collagen and macrophages in the involuting microenvi-
ronment, the stage is set for macrophage-promoted tumor
cell invasion.

Angiogenesis

Another route through which involution macrophages could
contribute to tumor progression is by promoting angiogene-
sis, the formation of new capillary networks from pre-existing
blood vessels. Both wound healing and tumor associated
macrophages have been implicated in angiogenesis [95].
Wound-derived macrophages have been shown in vivo to
stimulate neovascularization in corneal and rabbit ear
chamber angiogenesis assays [96–98]. The production of
several pro-angiogenic factors by wound macrophages has
also been demonstrated, including IL-1, TGF-α, TGF-β,
insulin-like growth factor (IGF-1), platelet-derived growth
factor (PDGF) and vascular endothelial growth factor
(VEGF) [99, 100]. Wound-derived macrophages can be
involved in many of the steps of angiogenesis including
induction of endothelial cell chemotaxis, proliferation and
matrix synthesis [101]. TAM share many of the pro-
angiogenic abilities of wound-derived macrophages. The
pro-angiogenic cytokines VEGF, TGF-α, and PDGF are also
released by TAM when in hypoxic environments, as well as
IL-8, basic FGF (bFGF), and prostaglandin E2 (PGE2) [102].
Several mouse models have demonstrated a distinct role for
macrophages in the ‘angiogenic switch’ required for malig-
nant progression. In a human xenograft model of breast
cancer, the depletion of CSF-1 by anti-sense oligonucleotides,
siRNAs or antibodies resulted in reduced angiogenesis as
well as decreased tumor progression [32, 33]. Direct evidence
for macrophage-induced tumor angiogenesis comes from a
model where Tie2-expressing macrophages are recruited to
tumors [103]. Ablation of these macrophages reduces both
tumor angiogenesis and tumor growth [103]. Consistent with
this study, F4/80 positive macrophage infiltration occurs just
before increased tumor vessel density in the MMTV-PyMT
model [104]. When the macrophages were depleted by
genetic cross into the CSF-1 null background, the angiogenic
switch was significantly delayed, and a 50% decrease in
vascular density occurred [104]. In another study, tet-
inducible MMTV-VEGF-A mice were crossed with the
PyMT/CSF-1 null mice to determine whether the loss of
macrophage angiogenic function could be restored by VEGF-
A alone. The angiogenic switch was restored as well as tumor
progression [105]. As the primary cellular source for pro-
angiogenic VEGF-A in the PyMT model is TAM, this study
highlights the promotional role macrophages have in tumor
angiogenesis [104]. Clinical breast cancer data also support a
relationship between macrophages and angiogenesis, as
increased TAM number correlates with high vascular grades
of breast tumors and with poor prognosis in multiple studies
[4, 14, 99].

Under non-cancer conditions, involution macrophages are
not likely to be pro-angiogenic, but could be promoted to
this state by the presence of tumor cells. While angiogenesis
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is highly upregulated during the pregnant and lactational
periods of mammary gland development, during involution
the intricate capillary networks required for lactation regress
through currently unknown mechanisms [106]. While it is
difficult to detect apoptotic endothelial cells during involu-
tion, the vessel organization returns to the simple, pre-
pregnant network within 10 days post-weaning [107].
Concurrently, there is a progressive decrease in VEGF and
VEGF-receptor RNA levels [108]. However, based on the
known plastic response of macrophages to various environ-
mental cues, we propose that involution macrophages are
poised to respond to the presence of cancer cells by
switching to an angiogenic phenotype.

Targeting Macrophages for Prevention
of PABC-associated Metastasis?

Cumulatively, the data implicating macrophages in breast
cancer progression are highly compelling and identify
involution macrophages as a novel target for breast cancer
treatment and prevention. One potential direction would be
to inhibit or eliminate macrophage function during involu-
tion. In order to pursue this approach it would be essential
that involution macrophages be dispensable to gland
regression following pregnancy. Thus key unanswered
questions in this pursuit include determining whether the
intrinsic program of epithelial cell death and the
macrophage-associated tissue remodeling program during
involution are causally linked, whether these processes can
be separated and whether involution can proceed in the
absence of macrophages. As previously noted, the function
of the macrophage during gland involution is undefined.
However, there are many roles by which macrophages may
facilitate the involution process. As already discussed, one
putative role is in apoptotic cell clearance. While early
apoptotic cell clearance appears to be delegated to the
phagocytic mammary epithelial cells, the question of
whether macrophages contribute to clearance at later stages
is unresolved. Since a primary function of macrophages is
microbial clearance, it may be that they participate similarly
in the protection of the involuting gland, as involution has
been characterized by increased risk for mammary infection
and mastitis [109, 110]. Supportive of this role, genes
involved in the acute phase response, are upregulated
during involution [9, 10]. One key control gene signifi-
cantly upregulated during involution is signal transducer
and activator of transcription 3 (STAT3), which has been
shown to be essential for expression of several acute phase
response genes including serum amyloid P, fibrinogen-α
and -γ [111] (see Watson review, this issue). In the
background of a mammary epithelial cell specific condi-
tional STAT3 deletion, mammary involution becomes

susceptible to mastitis [112]. Alternatively or in addition,
the presence of macrophages in involution could contribute
to protection from autoimmune activation. Impaired clear-
ance of apoptotic cells can result in release of auto-antigens
and the production of auto-antibodies [113]. Therefore,
during involution, which is a physiologic period defined by
very high levels of apoptotic activity, it may be advanta-
geous for the immune system to be prepared for potential
misdirection and auto-antibody formation. Obviously, the
contribution of macrophages to gland involution requires
further examination before targeting involution macro-
phages for prevention or treatment of breast cancer can be
explored. Another potential direction could be modifying
the phenotype of involution macrophages to reduce their
tumor promoting capabilities. Theoretically, it would be
possible to redirect macrophage polarization to full M1/
tumor suppressive phenotype. Again, the consequences to
normal mammary gland involution and potential adverse
effects of such treatment would need to be fully explored.

Currently, pregnant and lactating women are permitted to
take general anti-inflammatory drugs, including ibuprofen.
Further, many pregnant and lactating women are encouraged
to increase their intake of omega-3 fatty acids, which have anti-
inflammatory activities. The omega-3 fatty acids eicosapen-
taenioc acid (EPA) and docosahexaenoic acid (DHA) are
found at high concentrations in fatty-fish. EPA and DHA
directly inhibit arachidonic acid biosynthesis from linoleic acid
by inhibiting delta 6 desaturase activity [114] and act as anti-
inflammatory agents in part by directly blocking arachidonic
acid synthesis; the parent molecule for many inflammatory
cytokines [115]. For example, n-3 fatty acids have been
shown to inhibit monocyte and macrophage IL-1β and TNFα
expression [115, 116]. Fish oil has also been shown to
decrease endotoxin-induced activation of NF-kB in mono-
cytes and subsequent inflammatory gene expression driven
by the NF-kB transcription factor [117]. Thus, it is reasonable
to determine whether fish oil or other mild anti-inflammatory
treatments targeted to involution prevent mammary cancer
promotion and metastasis in preclinical models of PABC.
These studies are currently underway in our laboratory.
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