Skip to main content
Log in

Interaction of double-stranded DNA inside single-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Deoxyribonucleic acid (DNA) is the genetic material for all living organisms, and as a nanostructure offers the means to create novel nanoscale devices. In this paper, we investigate the interaction of deoxyribonucleic acid inside single-walled carbon nanotubes. Using classical applied mathematical modeling, we derive explicit analytical expressions for the encapsulation of DNA inside single-walled carbon nanotubes. We adopt the 6–12 Lennard–Jones potential function together with the continuous approach to determine the preferred minimum energy position of the dsDNA molecule inside a single-walled carbon nanotube, so as to predict its location with reference to the cross-section of the carbon nanotube. An analytical expression is obtained in terms of hypergeometric functions which provides a computationally rapid procedure to determine critical numerical values. We observe that the double-strand DNA can be encapsulated inside a single-walled carbon nanotube with a radius larger than 12.30 Å, and we show that the optimal single-walled carbon nanotube to enclose a double-stranded DNA has radius 12.8 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Abu-Salah, A.A. Ansari, S.A. Alrokayan, J. Biomed. Biotechnol. 15 (2010)

  2. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Molecular Biology of the Cell. Garland Science, New York (2002)

    Google Scholar 

  3. Bonard J.M., Weiss N., Kind H., Stckli T., Forr L., Kern K., Chtelain A.: Adv. Mater. 13, 184–188 (2001)

    Article  CAS  Google Scholar 

  4. Cox B.J., Thamwattana N., Hill J.M.: J. Phys. A Math. Theor. 41, 27 (2008)

    Google Scholar 

  5. Cui D., Ozkan C.S., Ravindran S., Kong H.G.Y.: Mech. Chem. Biol. 1, 113–122 (2004)

    Google Scholar 

  6. Drexler E.K.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, Chichester (1992)

    Google Scholar 

  7. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.G.: Higher Transcendental Functions, vol. I. McGraw-Hill, USA (1953)

    Google Scholar 

  8. Gao H., Kong Y.: Annu. Rev. Mater. Res. 34, 123–150 (2004)

    Article  CAS  Google Scholar 

  9. Girifalco L.A., Hodak M., Lee R.S.: Phys. Rev. B 62, 104–110 (2000)

    Article  Google Scholar 

  10. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2007)

    Google Scholar 

  11. Hart H., Craine L.E., Hart D.J., Hadad C.M.: Organic Chemistry, A Short Course. Houghton Mifflin Company, Boston (2007)

    Google Scholar 

  12. Hilder T.A., Hill J.M.: Small 5, 300–308 (2009)

    Article  CAS  Google Scholar 

  13. Hirschfelder J.O., Curtiss C.F., Bird R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    Google Scholar 

  14. Ito T., Sun L., Crooks R.M.: Chem. Commun. 13, 1482–1483 (2003)

    Article  Google Scholar 

  15. Kam N.W.S., O’Connell M., Wisdom J.A., Dai H.: Proc. Natl. Acad. Sci. USA. 102, 11600–11605 (2005)

    Article  CAS  Google Scholar 

  16. S. Kilina, D.A. Yarotski, A.A. Talin, S. Tretiak, A.J. Taylor A.V. Balatsky, J. Drug. Deliv. 9 (2011), Proc. Natl. Acad. Sci. USA

  17. Lau E.Y., Lightstone F.C., Colvin M.E.: Chem. Phys. Lett. 412, 82–87 (2005)

    Article  CAS  Google Scholar 

  18. Lodish H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D., Darnell J.: Molecular Cell Biology. W.H.Freeman and Co Ltd, New York (2000)

    Google Scholar 

  19. Lu G., Maragakis P., Kaxiras E.: Nano Lett. 5, 897–900 (2005)

    Article  CAS  Google Scholar 

  20. Mayo S.L., Olafson B.D., Goddard W.A.: J. Phys. Chem. 94, 8897–8909 (1990)

    Article  CAS  Google Scholar 

  21. Odom T.W., Huang J.L., Kim P., Lieber C.M.: J. Phys. Chem. B 104, 2794–2809 (2000)

    Article  CAS  Google Scholar 

  22. Shim M., Shi K.N.W., Chen R.J., Li Y., Dai H.: Nano Lett. 2, 285–288 (2002)

    Article  CAS  Google Scholar 

  23. Wang J.C.: Proc. Natl. Acad. Sci. USA 76, 200–203 (1979)

    Article  CAS  Google Scholar 

  24. Watson J.D., Crick F.H.: Nature 171, 737–738 (1953)

    Article  CAS  Google Scholar 

  25. Xu Y., Mi X., Aluru N.R.: Appl. Phys. Lett. 95, 113–116 (2009)

    Google Scholar 

  26. Xue Y., Chen M.: Nanotechnology 17, 5216–5223 (2006)

    Article  CAS  Google Scholar 

  27. Zheng M. et al.: Science 302, 1545–1548 (2003)

    Article  CAS  Google Scholar 

  28. Zheng M., Jagota A., Semke E.D., Diner B.A., Mclean R.S., Lustig S.R., Richardson R.E., Tassi N.G.: Nat. Mater. 2, 338–342 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor H. Alshehri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshehri, M.H., Cox, B.J. & Hill, J.M. Interaction of double-stranded DNA inside single-walled carbon nanotubes. J Math Chem 50, 2512–2526 (2012). https://doi.org/10.1007/s10910-012-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0046-2

Keywords

Navigation