Skip to main content
Log in

Apatite Coating of Iron Oxide Nanoparticles by Alternate Addition of Calcium and Phosphate Solutions: A Calcium and Carboxylate (Ca-COO) Complex-Mediated Apatite Deposition

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Apatite is a biocompatible material widely used to encapsulate iron-oxide nanoparticles (IONPs) for biomedical applications, such as drug-delivery or fluorescent probe agent. Apatite-coated IONPs are commonly fabricated by initially incubating carboxylate-functionalized IONPs in calcium solution and directly adding phosphate solution to initiate apatite precipitation (direct-addition method). Apatite precipitation took place not only on IONPs surface but also in the bulk solution, resulting in apatite-IONPs mixture instead of coated structure. In this study, robust apatite-coated IONPs structure were aimed by modifying steps in direct-addition method. Initially, carboxylate-functionalized IONPs were incubated in calcium solution, physically separated from the incubating calcium solution by external magnet, and then separately reacted with phosphate solution to induce apatite deposition (alternate-addition method). Fourier-transform infrared (FTIR) analysis showed that a calcium solution at a concentration of 0.8 mol/L was required to initiate the formation of the calcium-carboxylate (Ca-COO) complex. The formation of non-stoichiometric apatite was confirmed for IONPs with Ca-COO complex, as evidenced by X-ray diffraction and FTIR analysis. The alternate-addition method produced apatite coating in the form of flake-like structures, which also exhibited strong adhesion to IONPs surface. In contrast, direct-addition method mainly produced agglomerate of apatite particles that weakly associated with IONPs. Both of apatite-coating methods did not alter the magnetic properties of IONPs. The simple modification of reaction steps in the widely used apatite-coating method was demonstrated to be beneficial in producing robust apatite-coated IONPs structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Abbasi Aval, J. Pirayesh Islamian, M. Hatamian, M. Arabfirouzjaei, J. Javadpour, M.R. Rashidi, Int. J. Pharm. 509, 159 (2016)

    CAS  PubMed  Google Scholar 

  2. Q. Wang, B. Chen, F. Ma, S. Lin, M. Cao, Y. Li, N. Gu, Nano Res. 10, 626 (2017)

    Google Scholar 

  3. A.K. Gupta, R.R. Naregalkar, V.D. Vaidya, M. Gupta, Nanomedicine 2, 23 (2007)

    CAS  PubMed  Google Scholar 

  4. D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Pharm. Res. 33, 2373 (2016)

    CAS  PubMed  Google Scholar 

  5. R.M. Patil, N.D. Thorat, P.B. Shete, P.A. Bedge, S. Gavde, M.G. Joshi, S.A.M. Tofail, R.A. Bohara, Biochem. Biophys. Rep. 13, 63 (2018)

    PubMed  PubMed Central  Google Scholar 

  6. N. Sadeghiani, L.S. Barbosa, L.P. Silva, R.B. Azevedo, P.C. Morais, Z.G.M. Lacava, J. Magn. Magn. Mater. 289, 466 (2005)

    CAS  Google Scholar 

  7. N. Singh, G.J.S. Jenkins, R. Asadi, S.H. Doak, Nano Rev. 1, 5358 (2010)

    Google Scholar 

  8. C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Biomaterials 24, 4551 (2003)

    CAS  PubMed  Google Scholar 

  9. M. Mahmoudi, A. Simchi, M. Imani, M.A. Shokrgozar, A.S. Milani, U.O. Häfeli, P. Stroeve, Coll. Surf. B 75, 300 (2010)

    CAS  Google Scholar 

  10. S.M. Moghimi, A.C. Hunter, J.C. Murray, Pharmacol. Rev. 53, 283 (2001)

    CAS  PubMed  Google Scholar 

  11. E.B. Ansar, M. Ajeesh, Y. Yokogawa, W. Wunderlich, H. Varma, J. Am. Ceram. Soc. 95, 2695 (2012)

    CAS  Google Scholar 

  12. S. Karthi, G.A. Kumar, D.K. Sardar, G.C. Dannangoda, K.S. Martirosyan, E.K. Girija, Mater. Chem. Phys. 193, 356 (2017)

    CAS  Google Scholar 

  13. N. Tran, T.J. Webster, Acta Biomater. 7, 1298 (2011)

    CAS  PubMed  Google Scholar 

  14. C. Huang, Y. Zhou, Z. Tang, X. Guo, Z. Qian, S. Zhou, Dalt. Trans. 40, 5026 (2011)

    CAS  Google Scholar 

  15. M.-H. Chen, T. Yoshioka, T. Ikoma, N. Hanagata, F.-H. Lin, J. Tanaka, Sci. Technol. Adv. Mater. 15, 1 (2016)

    Google Scholar 

  16. M. Okuda, M. Takeguchi, Ó.Ó. Ruairc, M. Tagaya, Y. Zhu, A. Hashimoto, N. Hanagata, W. Schmitt, T. Ikoma, J. Electron. Microsc. 59, 173 (2010)

    CAS  Google Scholar 

  17. G.K. Toworfe, R.J. Composto, I.M. Shapiro, P. Ducheyne, Biomaterials 27, 631 (2006)

    CAS  PubMed  Google Scholar 

  18. V. Irawan, T. Sugiyama, T. Ikoma, Key Eng. Mater. 696, 121 (2016)

    Google Scholar 

  19. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Carbohydr. Res. 345, 469 (2010)

    CAS  PubMed  Google Scholar 

  20. X. Gao, D.W. Metge, C. Ray, R.W. Harvey, J. Chorover, Environ. Sci. Technol. 43, 7423 (2009)

    CAS  PubMed  Google Scholar 

  21. H. Zhang, K. Zhou, Z. Li, S. Huang, J. Phys. Chem. Solids 70, 243 (2009)

    CAS  Google Scholar 

  22. P. Caesario, T. Harumoto, Y. Nakamura, J. Shi, J. Magn. Magn. Mater. 443, 22 (2017)

    CAS  Google Scholar 

  23. M. Răcuciu, D.E. Creangă, A. Airinei, Eur. Phys. J. E 21, 117 (2006)

    PubMed  Google Scholar 

  24. Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, P.N. Prasad, J. Phys. Chem. B 109, 3879 (2005)

    CAS  PubMed  Google Scholar 

  25. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura, H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004)

    CAS  Google Scholar 

  26. S. Nigam, K.C. Barick, D. Bahadur, J. Magn. Magn. Mater. 323, 237 (2011)

    CAS  Google Scholar 

  27. E. Tombácz, K. Farkas, I. Földesi, M. Szekeres, E. Illés, I.Y. Tóth, D. Nesztor, T. Szabó, Interface Focus 6, 20160068 (2016)

    PubMed  PubMed Central  Google Scholar 

  28. M.E. De Sousa, M.B. Fernández Van Raap, P.C. Rivas, P. Mendoza Zélis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, F.H. Sánchez, J. Phys. Chem C 117, 5436 (2013)

    Google Scholar 

  29. K. Nakamoto, in Handbook of Vibrational Spectroscopy, ed. by P.R. Griffiths (Wiley, Chichester, 2006)

    Google Scholar 

  30. M.J. Avena, L.K. Koopal, Environ. Sci. Technol. 32, 2572 (1998)

    CAS  Google Scholar 

  31. W.C. Miles, P.P. Huffstetler, J.D. Goff, A.Y. Chen, J.S. Riffle, R.M. Davis, Langmuir 27, 5456 (2011)

    CAS  PubMed  Google Scholar 

  32. C. Kotsmar, K.Y. Yoon, H. Yu, S.Y. Ryoo, J. Barth, S. Shao, M. Prodanović, T.E. Milner, S.L. Bryant, C. Huh, K.P. Johnston, Ind. Eng. Chem. Res. 49, 12435 (2010)

    CAS  Google Scholar 

  33. E. Tombácz, I.Y. Tóth, D. Nesztor, E. Illés, A. Hajdú, M. Szekeres, L. Vékás, Coll. Surf. A 435, 91 (2013)

    Google Scholar 

  34. T. Taguchi, A. Kishida, M. Akashi, Chem. Lett. 27, 711 (1998)

    Google Scholar 

  35. M. Tanahashi, T. Matsuda, J. Biomed. Mater. Res. 34, 305 (1997)

    CAS  PubMed  Google Scholar 

  36. S. Rhee, J. Tanaka, Biomaterials 20, 2155 (1999)

    CAS  PubMed  Google Scholar 

  37. Y. Lu, J.D. Miller, J. Coll. Interface Sci. 256, 41 (2002)

    CAS  Google Scholar 

  38. J.P. Glusker, Acc. Chem. Res. 13, 345 (1980)

    CAS  Google Scholar 

  39. E.G. De Araújo, F.E. De Morais, E.V. Dos Santos, C.A. Martinez-Huitle, M.L. Da Silva, S.P.M. Cabral de Souza, N.S. Fernandes, Brazilian. J. Therm. Anal. 2, 17 (2014)

    Google Scholar 

  40. S. Koutsopoulos, J. Biomed. Mater. Res. 62, 600 (2002)

    CAS  PubMed  Google Scholar 

  41. J. Mahamid, A. Sharir, L. Addadi, S. Weiner, Proc. Natl. Acad. Sci. 105, 12748 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. J.D. Termine, A.S. Posner, Nature 211, 268 (1966)

    CAS  PubMed  Google Scholar 

  43. S. Mann, Nature 332, 119 (1988)

    CAS  Google Scholar 

  44. M. Kamitakahara, N. Ito, S. Murakami, N. Watanabe, K. Ioku, J. Ceram. Soc. Japan 117, 385 (2009).

    CAS  Google Scholar 

  45. Q.J. He, Z.L. Huang, Cryst. Res. Technol. 42, 460 (2007)

    CAS  Google Scholar 

  46. K. Hata, T. Kokubo, T. Nakamura, T. Yamamuro, J. Am. Ceram. Soc. 78, 1049 (1995)

    CAS  Google Scholar 

  47. A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, X. Peng, J. Am. Chem. Soc. 128, 10310 (2006)

    CAS  PubMed  Google Scholar 

  48. V. Irawan, T.-C. Sung, A. Higuchi, T. Ikoma, Tissue Eng. Regen. Med. 15, 673 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Ethirajan, U. Ziener, K. Landfester, Chem. Mater. 21, 2218 (2009)

    CAS  Google Scholar 

  50. M. Stoia, R. Istratie, C. Păcurariu, J. Therm. Anal. Calorim. 125, 1185 (2016)

    CAS  Google Scholar 

  51. I. Tang, N. Krishnamra, N. Charoenphandhu, R. Hoonsawat, W. Pon-On, Nanoscale Res. Lett. 1, 19 (2010)

    Google Scholar 

  52. R. Karunamoorthi, G. Suresh Kumar, A.I. Prasad, R.K. Vatsa, A. Thamizhavel, E.K. Girija, J. Am. Ceram. Soc. 97, 1115 (2014)

    CAS  Google Scholar 

  53. W.M. Li, S.Y. Chen, D.M. Liu, Acta Biomater. 9, 5360 (2013)

    CAS  PubMed  Google Scholar 

  54. Y. Ling, K. Wei, Y. Luo, X. Gao, S. Zhong, Biomaterials 32, 7139 (2011)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Ikoma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10904_2019_1255_MOESM1_ESM.tif

Supplementary material 1 Supplementary Figure 1 Schematic representation of direct-addition and alternate-addition method (TIFF 467 kb)

10904_2019_1255_MOESM2_ESM.tif

Supplementary material 2 Supplementary Figure 2 (left figure) Selected area of CaP-0.8 is indicated by yellow box; (right figures) RGB map is a combined image of separate elemental mapping of Fe, Ca, O, and P (TIFF 1690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irawan, V., Takeguchi, M. & Ikoma, T. Apatite Coating of Iron Oxide Nanoparticles by Alternate Addition of Calcium and Phosphate Solutions: A Calcium and Carboxylate (Ca-COO) Complex-Mediated Apatite Deposition. J Inorg Organomet Polym 30, 1132–1140 (2020). https://doi.org/10.1007/s10904-019-01255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01255-4

Keywords

Navigation