Skip to main content

Advertisement

Log in

Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work, Chitosan/bentonite, Chitosan/Ag-bentonite and Chitosan/AgNPs-bentonite composite materials were prepared and shaped in form of beads, and characterized using several methods. After that, their thermal stability, swelling properties and antibacterial and antifungal activity were evaluated. In the case of Chitosan/AgNPs-bentonite, the XRD analysis confirms the partial intercalation of chitosan in the interlayer of bentonite and the formation of silver nanoparticles, AgNPs, with an average diameter between 10 and 25 nm. The latter is confirmed by UV–Visible diffuse reflectance spectroscopy by the apparition of the large absorption band at 442 nm. For all prepared materials, the FTIR analysis shows the presence of strong interaction between chitosan reactive groups and bentonite interlayer materials. This result is confirmed by thermal analysis where it is observed that these composite materials exhibit a higher thermal stability than the biopolymer alone. The composite materials present also a very good swelling capacity. Indeed, the swelling rate carried out in water media at pH 7 and a temperature of 30 °C is 160% higher than that of the corresponding dried material. Otherwise, Chitosan/AgNPs-bentonite sample displays a very high antibacteriaPseudomonas aeruginosal activity against pathogen bacteria strains such as Staphylococcus aureus ATCC 25923 and ATCC 27853. This activity is less important for S. aureus ATCC 43300 and no activity is observed for Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Since the starting chitosan and bentonite materials showed no antibacterial or antifungal activity, the antibacterial activity of Chitosan/AgNPs-bentonite sample is attributed to loaded AgNPs species.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater. Sci. Eng. C 74, 325–333 (2017)

    CAS  Google Scholar 

  2. K. Kaviyarasu, K. Kanimozhi, N. Matinise, C.M. Magdalane, G.T. Mola, J. Kennedy, M. Maaza, Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

    CAS  Google Scholar 

  3. A.M. Amanulla, S.J. Shahina, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, D. Letsholathebe, S. Mohamed, J. Kennedy, M. Maaza, Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4-Co3O4 nanocomposites and its synthesis and characterization. J. Photochem. Photobiol. B 183, 233–241 (2018)

    Google Scholar 

  4. C.M. Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G. Mola, N. AbdullahAl-Dhabi, M.V. Arasu, M. Henini, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/Visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng. 26, 49–60 (2018)

    Google Scholar 

  5. C.M. Magdalane, K. Kaviyarasu, A. Raja, M. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst. J. Photochem. Photobiol. B 185, 275–282 (2018)

    Google Scholar 

  6. Z.A.M. Kebir, A. Mokhtar, M. Adjdir, A. Bengueddach, M. Sassi, Preparation and antibacterial activity of silver nanoparticles intercalated kenyaite materials. Mater. Res. Express 5, 8 (2018)

    Google Scholar 

  7. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 3, 168–171 (2007)

    CAS  Google Scholar 

  8. S. Magana, P. Quintana, D. Aguilar, J. Toledo, C. Angeles-Chavez, M. Cortes, L. Leon, Y. Freile-Pelegrín, T. Lopez, R.T. Sánchez, Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A 281, 192–199 (2008)

    CAS  Google Scholar 

  9. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Xu, X. Shi, H. Ma, Y. Lv, L. Zhang, Z. Mao, The preparation and antibacterial effects of dopa-cotton/AgNPs. Appl. Surf. Sci. 257, 6799–6803 (2011)

    CAS  Google Scholar 

  11. G. Xu, X. Qiao, X. Qiu, J. Chen, Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J. Mater. Sci. Technol. 27, 685–690 (2011)

    CAS  Google Scholar 

  12. H.-L. Su, C.-C. Chou, D.-J. Hung, S.-H. Lin, I.-C. Pao, J.-H. Lin, F.-L. Huang, R.-X. Dong, J.-J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979–5987 (2009)

    CAS  PubMed  Google Scholar 

  13. S.K. Pillai, S.S. Ray, M. Scriba, J. Bandyopadhyay, M. Roux-van der Merwe, J. Badenhorst, Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl. Clay Sci. 83, 315–321 (2013)

    Google Scholar 

  14. E. Bennion, L. Sotheby’s, Antique Dental Instruments (Sotheby’s publications, London, 1986)

    Google Scholar 

  15. S. Raut, R. Ralegaonkar, S. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: a review of waste-create bricks. Constr. Build. Mater. 25, 4037–4042 (2011)

    Google Scholar 

  16. J. Sen, P. Prakash, N. De, Nano-clay composite and phyto-nanotechnology: a new horizon to food security issue in Indian agriculture. J. Global Biosci. 4, 2187–2198 (2015)

    Google Scholar 

  17. T. Tsoufis, L. Jankovic, D. Gournis, P.N. Trikalitis, T. Bakas, Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Mater. Sci. Eng. B 152, 44–49 (2008)

    CAS  Google Scholar 

  18. R.S. Varma, Clay and clay-supported reagents in organic synthesis. Tetrahedron 58, 1235–1255 (2002)

    CAS  Google Scholar 

  19. M. Chiban, M. Zerbet, G. Carja, F. Sinan, Application of low-cost adsorbents for arsenic removal: a review. J. Environ. Chem. Ecotoxicol. 4, 91–102 (2012)

    Google Scholar 

  20. L.-N. Shi, X. Zhang, Z.-L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 45, 886–892 (2011)

    CAS  PubMed  Google Scholar 

  21. S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262, 439–446 (2013)

    CAS  PubMed  Google Scholar 

  22. D. Bouazza, H. Miloudi, M. Adjdir, A. Tayeb, A. Boos, Competitive adsorption of Cu(II) and Zn(II) on impregnate raw Algerian bentonite and efficiency of extraction. Appl. Clay Sci. 151, 118–123 (2018)

    CAS  Google Scholar 

  23. Y.S. Reddy, C.M. Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J. Phys. Chem. Solids 123, 43–51 (2018)

    Google Scholar 

  24. F. Bergaya, G. Lagaly, Developments in clay science. Elsevier 5, 1–19 (2013)

    Google Scholar 

  25. V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem. Eng. J. 197, 379–386 (2012)

    CAS  Google Scholar 

  26. A. Bée, L. Obeid, R. Mbolantenaina, M. Welschbillig, D. Talbot, Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J. Magn. Magn. Mater. 421, 59–64 (2017)

    Google Scholar 

  27. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: synthetic path and characterization. Int. J. Biol. Macromol. 118, 2149–2155 (2018)

    CAS  PubMed  Google Scholar 

  28. Y.-S. Han, S.-H. Lee, K.H. Choi, I. Park, Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity. J. Phys. Chem. Solids 71, 464–467 (2010)

    CAS  Google Scholar 

  29. K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203 (2006)

    CAS  PubMed  Google Scholar 

  30. Y. Liu, Z. Zhong, Extraction of heavy metals, dichromate anions and rare metals by new calixarene-chitosan polymers. J. Inorg. Organomet. Polym. Mater. 28, 962–967 (2018)

    CAS  Google Scholar 

  31. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    CAS  Google Scholar 

  32. C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR–ATR study on chitosan and chitosan/clay films. Polymer 99, 614–622 (2016)

    CAS  Google Scholar 

  33. Z. Cherifi, B. Boukoussa, A. Zaoui, M. Belbachir, R. Meghabar, Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in situ polymerization. Ultrason. Sonochem. 48, 188 (2018)

    CAS  PubMed  Google Scholar 

  34. B. Liu, J. Luo, X. Wang, J. Lu, H. Deng, R. Sun, Alginate/quaternized carboxymethyl chitosan/clay nanocomposite microspheres: preparation and drug-controlled release behavior. J. Biomater. Sci. Polym. Ed. 24, 589–605 (2013)

    CAS  PubMed  Google Scholar 

  35. S. Farhoudian, M. Yadollahi, H. Namazi, Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int. J. Biol. Macromol. 82, 837–843 (2016)

    CAS  PubMed  Google Scholar 

  36. M. Zahraoui, A. Mokhtar, M. Adjdir, F. Bennabi, R. Khaled, A. Djelad, A. Bengueddach, M. Sassi, Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications. Res. Chem. Intermed. 1, 12 (2018)

    Google Scholar 

  37. A. Saravanakumar, M. Ganesh, J. Jayaprakash, H.T. Jang, Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem. 28, 277–281 (2015)

    CAS  Google Scholar 

  38. J. Balavijayalakshmi, V. Ramalakshmi, Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J. Appl. Res. Technol. 15, 413–422 (2017)

    Google Scholar 

  39. T. Kayalvizhi, S. Ravikumar, P. Venkatachalam, Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J. Environ. Eng. 142, C4016002 (2016)

    Google Scholar 

  40. C. Paluszkiewicz, M. Holtzer, A. Bobrowski, FTIR analysis of bentonite in moulding sands. J. Mol. Struct. 880, 109–114 (2008)

    CAS  Google Scholar 

  41. F.G. Alabarse, R.V. Conceição, N.M. Balzaretti, F. Schenato, A.M. Xavier, In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 51, 202–208 (2011)

    CAS  Google Scholar 

  42. H. Moussout, H. Ahlafi, M. Aazza, O. Zegaoui, C. El Akili, Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5% bentonite/chitosan. Water Sci. Technol. 73, 2199–2210 (2016)

    CAS  PubMed  Google Scholar 

  43. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite. Res. Chem. Intermed. 1, 10 (2018)

    Google Scholar 

  44. F.G. Torres, J. Arroyo, R. Alvarez, S. Rodriguez, O. Troncoso, D. López, Molecular dynamics of carboxymethyl κ/ι-hybrid carrageenan films doped with NH4I. Polym.-Plast. Technol. Eng. 1, 14 (2018)

    Google Scholar 

  45. A.R. Nesic, S.J. Velickovic, D.G. Antonovic, Characterization of chitosan/montmorillonite membranes as adsorbents for bezactiv orange V-3R dye. J. Hazard. Mater. 209, 256–263 (2012)

    PubMed  Google Scholar 

  46. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Structural and antibacterial properties of HyZnxNa2−xSi14O29nH2O layered silicate compounds, prepared by ion-exchange reaction. J. Inorg. Organomet. Polym. Mater. 1, 10 (2019)

    Google Scholar 

  47. J.P. Montañez, S. Gómez, A.N. Santiago, L.B. Pierella, TiO2 supported on HZSM-11 zeolite as efficient catalyst for the photodegradation of chlorobenzoic acids. J. Braz. Chem. Soc. 26, 1191–1200 (2015)

    Google Scholar 

  48. S.A. Babu, H.G. Prabu, Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Mater. Lett. 65, 1675–1677 (2011)

    CAS  Google Scholar 

  49. M. Zahran, H.B. Ahmed, M. El-Rafie, Alginate mediate for synthesis controllable sized AgNPs. Carbohyd. Polym. 111, 10–17 (2014)

    CAS  Google Scholar 

  50. H. Moussout, H. Ahlafi, M. Aazza, A. Amechrouq, Bentonite/chitosan nanocomposite: preparation, characterization and kinetic study of its thermal degradation. Thermochim. Acta 659, 191–202 (2018)

    CAS  Google Scholar 

  51. A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Structure and intercalation behavior of copperII on the layered sodium silicate magadiite material. Chem. Pap. 72, 39–50 (2018)

    CAS  Google Scholar 

  52. X. Wang, Y. Du, J. Yang, X. Wang, X. Shi, Y. Hu, Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47, 6738–6744 (2006)

    CAS  Google Scholar 

  53. K. Gupta, M.R. Kumar, Drug release behavior of beads and microgranules of chitosan. Biomaterials 21, 1115–1119 (2000)

    CAS  PubMed  Google Scholar 

  54. G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int. J. Pharm. 323, 34–42 (2006)

    CAS  PubMed  Google Scholar 

  55. Q. Wang, X. Xie, X. Zhang, J. Zhang, A. Wang, Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int. J. Biol. Macromol. 46, 356–362 (2010)

    CAS  PubMed  Google Scholar 

  56. S. Ravindra, Y.M. Mohan, N.N. Reddy, K.M. Raju, Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Coll. Surf. A 367, 31–40 (2010)

    CAS  Google Scholar 

  57. J.S. Gabriel, V.A. Gonzaga, A.L. Poli, C.C. Schmitt, Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohyd. Polym. 171, 202–210 (2017)

    CAS  Google Scholar 

  58. L.F. Giraldo, P. Camilo, T. Kyu, Incorporation of silver in montmorillonite-type phyllosilicates as potential antibacterial material. Curr. Opin. Chem. Eng. 11, 7–13 (2016)

    Google Scholar 

  59. K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, N.A. Ibrahim, R.A. Rahman, M. Jokar, M. Darroudi, Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int. J. Nanomed. 5, 573 (2010)

    CAS  Google Scholar 

  60. K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, A. Rustaiyan, N.A. Ibrahim, M. Zargar, Y. Abdollahi, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int. J. Nanomed. 5, 875 (2010)

    CAS  Google Scholar 

  61. K. Shameli, M.B. Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int. J. Nanomed. 6, 331 (2011)

    CAS  Google Scholar 

  62. Z.A.M. Kebir, M. Adel, M. Adjdir, A. Bengueddach, M. Sassi, Preparation and antibacterial activity of silver nanoparticles intercalated kenyaite materials. Mater. Res. Express 5, 085021 (2018)

    Google Scholar 

  63. S.K. Jou, N.A.N.N. Malek, Characterization and antibacterial activity of chlorhexidine loaded silver-kaolinite. Appl. Clay Sci. 127, 1–9 (2016)

    Google Scholar 

  64. Y. Zhang, Y. Chen, H. Zhang, B. Zhang, J. Liu, Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J. Inorg. Biochem. 118, 59–64 (2013)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkrim, S., Mokhtar, A., Djelad, A. et al. Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties. J Inorg Organomet Polym 30, 831–840 (2020). https://doi.org/10.1007/s10904-019-01219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01219-8

Keywords

Navigation