Skip to main content

Advertisement

Log in

Gelatin–Gold Nanoparticles as an Ideal Candidate for Curcumin Drug Delivery: Experimental and DFT Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, gold nanoparticles (GNPs) were first synthesized and then coated with gelatin by using a straightforward method. Subsequently, the resulted nanocomposite was used as curcumin drug carriers. The principal aim of the study is to determine the most appropriate size of GNPs that offers the highest yield for curcumin drug delivering. Various methods were utilized to characterize the synthesized GNPs including UV–Vis spectrophotometry, dynamic light scattering (DLS), scanning electron microscopy (SEM), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, since the coating of GNPs with gelatin is an important issue in the delivery system, we have persuaded to investigate the electronic structure of gelatin-GNPs complex using density functional theory (DFT) method. The experimental results clearly demonstrates that the largest GNPs (100 nm) exhibit the highest Encapsulation Efficiency (EE). In addition, studying the release profile of curcumin at two different pH values (7.4 and 5.4) at 37 °C for 48 h revealed that the amount of drug released at pH 5.4 is greater than that of pH 7.4 and also the release rate is slow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Suarasan, M. Focsan, M. Potara, O. Soritau, A. Florea, D. Maniu, S. Astilean, Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl. Mater. Interfaces 8(35), 22900 (2016)

    Article  CAS  Google Scholar 

  2. G. Mariacristina, Novel biodegradable nanocarriers for enhanced drug delivery. Ther. Deliv. 7(12), 809 (2016)

    Article  Google Scholar 

  3. A. Imran, M.N. Lone, M. Suhail, S.D. Mukhtar, L. Asnin, Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem. 23(20), 2159–2187 (2016)

    Article  Google Scholar 

  4. A.I. Mohamed, A.K. Hussain, G.M. Zayed, S.M. Shaykoon, R.A. Mahmoud, Preparation and characterization of cytotoxic drugloaded gold nanoparticles. IJPPR. 6(4), 640–652 (2016)

    CAS  Google Scholar 

  5. M.P. Neupane, S.J. Lee, I.S. Park, M.H. Lee, T.S. Bae, Y. Kuboki, M. Uo, F. Watari, Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J. Nanoparticle Res. 13(2), 491 (2011)

    Article  CAS  Google Scholar 

  6. H. Bahadar, F. Maqbool, K. Niaz, M. Abdollahi, Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20(1), 1–11 (2016)

    PubMed  PubMed Central  Google Scholar 

  7. M. Ramezanpour, S.S.W. Leung, K.H. Delgado-Magnero, B.Y.M. Bashe, J. Thewalt, D.P. Tieleman, Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta 1858(7), 1688–1709 (2016)

    Article  CAS  Google Scholar 

  8. M. Sengani, A.M. Grumezescu, V.D. Rajeswari, Recent trends and methodologies in gold nanoparticle synthesis—a prospective review on drug delivery aspect. OpenNano 2, 37–46 (2017)

    Article  Google Scholar 

  9. A. Srivastava, T. Yadav, S. Sharma, A. Nayak, A.A. Kumari, N. Mishra, Polymers in drug delivery. J. Biosci. Med. 4(01), 69–84 (2015)

    Google Scholar 

  10. M.S. Hamid Akash, K. Rehman, S. Chen, Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym. Rev. 55(3), 371–406 (2015)

    Article  CAS  Google Scholar 

  11. A.I. Nossier, O.S. Mohammed, R.R.F. El-deen, A.S. Zaghloul, S. Eissa, Gelatin-modified gold nanoparticles for direct detection of urinary total gelatinase activity: diagnostic value in bladder cancer. Talanta 161, 511–519 (2016)

    Article  CAS  Google Scholar 

  12. S. Doppalapudi, A. Jain, A.J. Domb, W. Khan, Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin. Drug Deliv. 13(6), 891–909 (2016)

    Article  CAS  Google Scholar 

  13. S. Suarasan, T. Simon, S. Boca, C. Tomuleasa, S. Astilean, Gelatin-coated gold nanoparticles as carriers of FLT 3 inhibitors for acute myeloid leukemia treatment. Chem. Biol. Drug Des. 87(6), 927–935 (2016)

    Article  CAS  Google Scholar 

  14. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  15. J. Liu, Y. Lu, Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem. Commun. 46, 4872–4874 (2007)

    Article  Google Scholar 

  16. X. Liu, H. Huang, Q. Jin, J. Ji, Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles. Langmuir 27(9), 5242–5251 (2011)

    Article  CAS  Google Scholar 

  17. L. Ruangpan, E. Tendencia, Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquatic Animals and Environment (Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, 2004)

    Google Scholar 

  18. D. Brown, D. Kothari, Comparison of antibiotic discs from different sources. J. Clin. Pathol. 28(10), 779–783 (1975)

    Article  CAS  Google Scholar 

  19. A. Shokuhi Rad, Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Physica E 83, 135–140 (2016)

    Article  Google Scholar 

  20. A. Shokuhi Rad, M.R. Zardoost, E. Abedini, First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations. J Mol. Model 21, 273 (2015)

    Article  Google Scholar 

  21. A. Shokuhi Rad, K. Ayub, Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: a surface study by DFT. Vacuum 133, 70–80 (2016)

    Article  Google Scholar 

  22. A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017)

    Article  CAS  Google Scholar 

  23. A. Shokuhi Rad, Study on the surface interaction of Furan with X12Y12 (X = B, Al, and Y = N, P) semiconductors: DFT calculations. Heteroat. Chem. 27, 316–322 (2016)

    Article  CAS  Google Scholar 

  24. A. Shokuhi Rad, P. Valipour, Interaction of methanol with some aniline and pyrrole derivatives: DFT calculations. Synth. Met. 209, 502–511 (2015)

    Article  CAS  Google Scholar 

  25. S. Gholami, A. Rad, A. Heydarinasab, M. Ardjmand, Adsorption of adenine on the surface of Nickel-decorated graphene; a DFT study. J Alloys Compds. 686, 662–668 (2016)

    Article  CAS  Google Scholar 

  26. A.S. Rad, K. Ayub, O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: a comprehensive DFT study. Solid State Sci. 69, 22–30 (2017)

    Article  CAS  Google Scholar 

  27. A. Shokuhi Rad, S.S. Shabestari, S.A. Jafari, M.R. Zardoost, A. Mirabi, N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations. Mol Phys. 114, 1756–1762 (2016)

    Article  Google Scholar 

  28. R. Padash, M. Rahimi-Nasrabadi, A.S. Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, A comparative computational investigation of phosgene adsorption on (XY)12 (X = Al, B and Y = N, P) nanoclusters: DFT investigations. J. Clust. Sci. 30, 203–218 (2019)

    Article  CAS  Google Scholar 

  29. M. Sherafati, A.S. Rad, M. Ardjmand, A. Heydarinasab, M. Peyravi, M. Mirzaei, Beryllium oxide (BeO) nanotube provides excellent surface towards adenine adsorption: a dispersion-corrected DFT study in gas and water phases. Curr. Appl. Phys. 18, 1059–1065 (2018)

    Article  Google Scholar 

  30. M. Mirmotahari, E. Sani, A.S. Rad, M.A. Khalilzadeh, Calcium-doped single-wall nanotubes (Ca/SWCNTs) as a superior carrier for atropine drug delivery: a quantum-chemical study in gas and solvent phases. J. Biomol. Struct. Dyn. (2018). https://doi.org/10.1080/07391102.2018.1546233

    Article  PubMed  Google Scholar 

  31. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (Gaussian, Inc., Wallingford CT, 2009)

  32. A.S. Rad, K. Ayub, Adsorption of thiophene on the surfaces of X12Y12 (X = Al, B, and Y = N,P) nanoclusters; A DFT study. J. Mol. Liq. 238, 303–309 (2017)

    Article  CAS  Google Scholar 

  33. A.S. Rad, A. Chourani, Nickel based paddle-wheel metal–organic frameworks towards adsorption of O3 and SO2 molecules: quantum-chemical calculations. J. Inorg. Organomet. Polym Mater. 27(2), 1826–1834 (2017)

    Article  CAS  Google Scholar 

  34. A. Shokuhi Rad, S.A. Aghouzi, N. Motaghedi, S. Maleki, M. Peyravi, Theoretical study of chemisorption of Cyanuric fluoride and S-Triazine on the surface of Al-doped graphene. Mol. Simul. 42, 1519–1527 (2016)

    Article  CAS  Google Scholar 

  35. A.S. Rad, S.M. Aghaei, Potential of metal–fullerene hybrids as strong nanocarriers for cytosine and guanine nucleobases: a detailed DFT study. Curr. Appl. Phys. 18(2), 133–140 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

Authors have no competing acknowledgements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Ardjmand or Ali Shokuhi Rad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodashenas, B., Ardjmand, M., Baei, M.S. et al. Gelatin–Gold Nanoparticles as an Ideal Candidate for Curcumin Drug Delivery: Experimental and DFT Studies. J Inorg Organomet Polym 29, 2186–2196 (2019). https://doi.org/10.1007/s10904-019-01178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01178-0

Keywords

Navigation