Skip to main content

Advertisement

Log in

Eu3+/TFA Functionalized MOF as Luminescent Enhancement Platform: A Ratiometric Luminescent Sensor for Hydrogen Sulfide in Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, a facile and fast luminescence sensing platform for the ratiometric detection of hydrogen sulfide (H2S/HS) has been constructed by encapsulating the Eu3+/β-diketone chromophore into the host framework of MIL-140 (Eu3+/TFA@MIL-140C, TFA = 1,1,1-Trifluoro-2,4-pentanedione). It is well known that the energy transfer from the host framework or/and TFA to the Eu3+ ions can be disturbed easily by some metal ions, such as Cu2+ ions. Therefore, the ratiometric sensor was constituted with the Eu3+/β-diketone moiety as the response signal and the host framework moiety as the reference signal. Furthermore, on the basis of the hard–soft acid–base theory, the Cu2+ ions could be rapidly caught by HS, profiting from the low solubility of CuS, realizing the real-time detection by luminescence color change. This sensor shows remarkable property on the detection of H2S (HS in water solution) with low limit of detection (LOD = 7.43 μM) and short response time (< 0.5 min). The good linearity between luminescent intensity and concentration makes the luminescent ratio meter feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.D. Yang, L.Y. Wu, B. Jiang, W. Yang, J.S. Qi, K. Cao, Q.H. Meng, A.K. Mustafa, W.T. Mu, S.M. Zhang, S.H. Snyder, R. Wang, H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322, 587–590 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. V.S. Lin, W. Chen, M. Xian, C.J. Chang, Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem. Soc. Rev. 44, 4596–4618 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. P.R. Berube, P.D. Parkinson, E.R. Hall, Measurement of reduced sulphur compounds contained in aqueous matrices by direct injection into a gas chromatograph with a flame photometric detector. J. Chromatogr. A 830, 485–489 (1999)

    CAS  Google Scholar 

  4. Y. Zhao, Y. Yang, L. Cui, F. Zheng, Q. Song, Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosens. Bioelectron. 117, 53–59 (2018)

    CAS  PubMed  Google Scholar 

  5. Q. Yang, W. Liu, B. Wang, W. Zhang, X. Zeng, C. Zhang, Y.J. Qin, X.M. Sun, T.P. Wu, J.F. Liu, F.W. Huo, J. Lu, Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 8, 14429 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Lee, J.H. Kwak, W. Choe, Evolution of form in metal–organic frameworks. Nat. Commun. 8, 14070 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Xia, C. He, X. Wang, C.Y. Duan, Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization. Nat. Commun. 8, 1–11 (2017)

    Google Scholar 

  8. D. Li, S.H. Yu, H.L. Jiang, From UV to near-infrared light-responsive metal-organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv. Mater. 30, 1707377 (2018)

    Google Scholar 

  9. L.H. Wee, M. Meledina, S. Turner, G. Van Tendeloo, K. Zhang, L.M. Rodriguez-Albelo, A. Masala, S. Bordiga, J.W. Jiang, J.A.R. Navarro, C.E.A. Kirschhock, J.A. Martens, 1D–2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc. 139, 819–828 (2017)

    CAS  PubMed  Google Scholar 

  10. G.Y. Jin, Z.J. Liu, H.F. Sun, Z.Y. Tian, Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF. Luminescence 31, 190–194 (2016)

    CAS  PubMed  Google Scholar 

  11. Y. Wang, M. He, Z. Tian, H. Zhong, L. Zhu, Y. Zhang, X. Zhang, D.L. Chen, Y.B. He, Rational construction of an ssa-type of MOF through pre-organizing the ligand’s conformation and its exceptional gas adsorption properties. Dalton Trans. 47, 2444–2452 (2018)

    CAS  PubMed  Google Scholar 

  12. I. Abanades-Lazaro, S. Abánades Lázaro, R.S. Forgan, Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. 54, 2792–2795 (2018)

    CAS  Google Scholar 

  13. F.L. Li, Q. Shao, X.Q. Huang, J.P. Lang, Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 57, 1888–1892 (2018)

    CAS  Google Scholar 

  14. F.L. Hu, Y. Mi, C. Zhu, B.F. Abrahams, P. Braunstein, J.P. Lang, Stereoselective solid-state synthesis of substituted cyclobutanes assisted by pseudorotaxane-like MOFs. Angew. Chem. Int. Ed. 57, 12696–12701 (2018)

    CAS  Google Scholar 

  15. D. Liu, Z.G. Ren, H.X. Li, J.P. Lang, N.Y. Li, B.F. Abrahams, Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective [2 + 2] photodimerization reactions. Angew. Chem. Int. Ed. 49, 4767–4770 (2010)

    CAS  Google Scholar 

  16. J. Sheng, L. Wang, L. Deng, M. Zhang, H. He, K. Zeng, F.Y. Tang, Y.N. Liu, MOF-Templated fabrication of hollow Co4 N@N-doped carbon porous nanocages with superior catalytic activity. ACS Appl. Mater. Interfaces. 10, 7191–7200 (2018)

    CAS  PubMed  Google Scholar 

  17. W. She, T. Qi, M. Cui, P.F. Yan, S.W. Ng, W.Z. Li, G.M. Li, Correction to High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl. Mater. Interfaces. 10, 17487 (2018)

    CAS  PubMed  Google Scholar 

  18. C. Avci-Camur, J. Troyano, J. Pérez-Carvajal, A. Legrand, D. Farrusseng, I. Imaz, D. Maspoch, Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chem. 20, 873–878 (2018)

    CAS  Google Scholar 

  19. D. Liu, J.P. Lang, B.F. Abrahams, Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal–organic framework through a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc. 133(29), 11042–11045 (2011)

    CAS  PubMed  Google Scholar 

  20. U. Ruschewitz, M. Sobieray, J. Gode, C. Seidel, C. Feldmann, M. Poß, Bright luminescence in lanthanide coordination polymers with tetrafluoroterephthalate as a bridging ligand. Dalton Trans. 44, 6249–6259 (2015)

    PubMed  Google Scholar 

  21. N. Sun, B. Yan, Fluorescence detection of urinary N-methylformamide for biomonitoring of human occupational exposure to N, N-dimethylformamide by Eu(III) functionalized MOFs. Sens. Actuators B 261, 153–160 (2018)

    CAS  Google Scholar 

  22. W.P. Chen, J. Yang, Y. Zhao, Y.J. Hu, B.L. Xiang, Synthesis and luminescence properties of brick-shaped lanthanum–organic frameworks with mesoporous and macroporous architectures. Luminescence 32, 1289–1293 (2017)

    CAS  PubMed  Google Scholar 

  23. K.Y. Cai, M.L. Zeng, F.F. Liu, N. Liu, Z.Z. Huang, Y.H. Song, L. Wang, BSA–AuNPs@Tb–AMP metal–organic frameworks for ratiometric fluorescence detection of DPA and Hg2+. Luminescence 32, 1277–1282 (2017)

    CAS  PubMed  Google Scholar 

  24. S.S. Nagarkar, B. Joarder, A.K. Chaudhari, S. Mukherjee, S.K. Ghosh, Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem. Int. Ed. 52, 2953–2957 (2013)

    Google Scholar 

  25. C. Wang, L. Tian, W. Zhu, S. Wang, P. Wang, Y. Liang, W.L. Zhang, H.W. Zhao, G.T. Li, Dye@ bio-MOF-1 composite as a dual-emitting platform for enhanced detection of a wide range of explosive molecules. ACS Appl. Mater. Interfaces. 9, 20076–20085 (2017)

    CAS  PubMed  Google Scholar 

  26. Y.X. Li, S.J. Li, P.F. Yan, X.Y. Wang, X. Yao, G.H. An, G.M. Li, Luminescence-colour-changing sensing of Mn2+ and Ag+ ions based on a white-light-emitting lanthanide coordination polymer. Chem. Commun. 53, 5067 (2017)

    CAS  Google Scholar 

  27. H. Xu, C.S. Cao, B. Zhao, A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chem. Commun. 51, 10280–10283 (2015)

    CAS  Google Scholar 

  28. C. Liu, B. Yan, Zeolite-type metal organic frameworks immobilized Eu3+ for cation sensing in aqueous environment. J. Colloid Interface Sci. 459, 206–211 (2015)

    CAS  PubMed  Google Scholar 

  29. W.X. Li, J.H. Gu, H.X. Li, M. Dai, D.J. Young, H.Y. Li, J.P. Lang, Post-synthetic modification of a two-dimensional metal–organic framework via photodimerization enables highly selective luminescent sensing of aluminum(III). Inorg. Chem. 57, 13453–13460 (2018)

    CAS  PubMed  Google Scholar 

  30. T.Y. Gu, M. Dai, D.J. Young, Z.G. Ren, J.P. Lang, Luminescent Zn(II) coordination polymers for highly selective sensing of Cr(III) and Cr(VI) in water. Inorg. Chem. 56, 4668–4678 (2017)

    Google Scholar 

  31. X.Y. Xu, B. Yan, Eu(III)-functionalized ZnO@MOF heterostructures: integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 5, 2215–2223 (2017)

    CAS  Google Scholar 

  32. J. Hao, X. Xu, H. Fei, L. Li, B. Yan, Functionalization of metal-organic frameworks for photoactive materials. Adv. Mater. 30, 1705634 (2018)

    Google Scholar 

  33. X. Xiao, B. Yan, X. Lian, Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale 10, 13722–13729 (2018)

    Google Scholar 

  34. F. Wang, Y.T. Wang, H. Yu, J.X. Chen, B.B. Gao, J.P. Lang, One unique 1D silver(I)-bromide-thiol coordination polymer used for highly efficient chemiresistive sensing of ammonia and amines in water. Inorg. Chem. 55, 9417–9423 (2016)

    CAS  PubMed  Google Scholar 

  35. M.M. Chen, L. Chen, H.X. Li, L. Brammer, J.P. Lang, Highly selective detection of Hg2+ and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer. Inorg. Chem. Front. 3, 1297–1305 (2016)

    CAS  Google Scholar 

  36. X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, B.L. Chen, G.D. Qian, A highly sensitive mixed lanthanide metal–organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559–15564 (2013)

    CAS  PubMed  Google Scholar 

  37. Y.L. Hou, H. Xu, R.R. Cheng, B. Zhao, Controlled lanthanide–organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications. Chem. Commun. 51, 6769–6772 (2015)

    CAS  Google Scholar 

  38. B. Li, H.M. Wen, Y.J. Cui, W. Zhou, G.D. Qian, B.L. Chen, Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819–8860 (2016)

    CAS  PubMed  Google Scholar 

  39. T. Islamoglu, S. Goswami, Z.Y. Li, A.J. Howarth, O.K. Farha, J.T. Hupp, Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc. Chem. Res. 50, 805–813 (2017)

    CAS  PubMed  Google Scholar 

  40. Y.Y. Cao, X.F. Guo, H. Wang, High sensitive luminescence metal-organic framework sensor for hydrogen sulfide in aqueous solution: a trial of novel turn-on mechanism. Sens. Actuators B 243, 8–13 (2017)

    CAS  Google Scholar 

  41. J. Gao, Q. Li, C.H. Wang, H.L. Tan, Copper (II)-mediated fluorescence of lanthanide coordination polymers doped with carbon dots for ratiometric detection of hydrogen sulfide. Sens. Actuators B 253, 27–33 (2017)

    CAS  Google Scholar 

  42. S.S. Nagarkar, A.V. Desai, S.K. Ghosh, A nitro-functionalized metal-organic framework as a reaction-based fluorescence turn-on probe for rapid and selective H2S detection. Chem.-Eur. J. 21, 9994–9997 (2015)

    CAS  PubMed  Google Scholar 

  43. S.S. Nagarkar, T. Saha, A.V. Desai, P. Talukdar, S.K. Ghosh, Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Sci. Rep. 4, 7053 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. D.M. Chen, C.X. Sun, Y. Peng, N.N. Zhang, H.H. Si, C.S. Liu, M. Du, Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sens. Actuators B 265, 104–109 (2018)

    CAS  Google Scholar 

  45. X.J. Zhang, F.Z. Su, D.M. Chen, Y. Peng, W.Y. Guo, C.S. Liu, M. Du, A water-stable EuIII-based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants. Dalton Trans. 48, 1843–1849 (2019)

    CAS  PubMed  Google Scholar 

  46. X.Y. Wang, X. Yao, Q. Huang, Y.X. Li, G.H. An, G.M. Li, Triple-wavelength-region luminescence sensing based on a color-tunable emitting lanthanide metal organic framework. Anal. Chem. 90, 6675 (2018)

    CAS  PubMed  Google Scholar 

  47. B. Yan, Q.M. Wang, Two luminescent molecular hybrids composed of bridged Eu(III)-β-diketone chelates covalently trapped in silica and titanate gels. Cryst. Growth Des. 8(5), 1484 (2008)

    CAS  Google Scholar 

  48. S.K. Das, C.S. Lim, S.Y. Yang, J.H. Han, B.R. Cho, A small molecule two-photon probe for hydrogen sulfide in live tissues. Chem. Commun. 48, 8395–8397 (2012)

    CAS  Google Scholar 

  49. V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross, C. Serre, A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012)

    CAS  Google Scholar 

  50. X. Shen, B. Yan, A novel fluorescence probe for sensing organic amine vapors from a Eu3+ β-diketonate functionalized bio-MOF-1 hybrid system. J. Mater. Chem. C 3, 7038–7044 (2015)

    CAS  Google Scholar 

  51. W.S. Lo, W.T. Wong, G.L. Law, Friend or foe? The role of solvents in non-triplet, intraligand charge transfer sensitization of lanthanide(III) luminescence. RSC Adv. 6, 74100–74109 (2016)

    CAS  Google Scholar 

  52. X. Zhang, J. Zhang, Q. Hu, Y.J. Cui, Y. Yang, G.D. Qian, Postsynthetic modification of metal–organic framework for hydrogen sulfide detection. Appl. Surf. Sci. 355, 814–819 (2015)

    CAS  Google Scholar 

  53. A. Buragohain, S. Biswas, Cerium-based azide-and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm 18, 4374–4381 (2016)

    CAS  Google Scholar 

  54. Y. Qian, J. Karpus, O. Kabil, S.Y. Zhang, H.L. Zhu, R. Banerjee, J. Zhao, C. He, Selective fluorescent probes for live-cell monitoring of sulphide. Nat. Commun. 2, 495 (2011)

    PubMed  Google Scholar 

  55. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y.J. Cui, B.L. Chen, G.D. Qian, Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl. Mater. Interfaces. 8, 32259–32265 (2016)

    CAS  PubMed  Google Scholar 

  56. T. Arakawa, M. Akamine, Determination of transition metal irons based on quenching of the rare earth luminescence. Sens. Actuators B Chem. 91, 252–255 (2003)

    CAS  Google Scholar 

  57. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21471051 and 21801070), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015113), Doctoral Fund of Ministry of Education of China (2017M621315), Heilongjiang Provincial Government Postdoctoral Science Foundation (LBH-Z17190), and State Key Laboratory of Fine Chemicals (KF1714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Wang or Guangming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, X., Li, J. et al. Eu3+/TFA Functionalized MOF as Luminescent Enhancement Platform: A Ratiometric Luminescent Sensor for Hydrogen Sulfide in Aqueous Solution. J Inorg Organomet Polym 29, 2124–2132 (2019). https://doi.org/10.1007/s10904-019-01171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01171-7

Keywords

Navigation