Skip to main content
Log in

Chemical Synthesis of Monodisperse Magnetic Nanoparticles for Sensitive Cancer Detection

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This short tutorial review highlights the advance in high temperature solution phase chemical synthesis of monodisperse magnetic nanoparticles (MNPs), especially iron oxide NPs, as contrast enhancement agents for cancer detection by magnetic resonance imaging (MRI). It introduces briefly the unique nanomagnetism of MNPs required for MRI. It then summarizes some typical methods used to prepare monodisperse Fe3O4 and ferrite MFe2O4 MNPs from high temperature organic phase reaction with controlled magnetic properties. It further outlines the chemistry used to make these MNPs biocompatible and target-specific. Finally it presents two examples to demonstrate the MNP control achieved from chemical synthesis for sensitive detection of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.G. Mitchell, MRI Principles (W. B. Saunders Company, Philadelphia, PA, 1999)

    Google Scholar 

  2. M.O. Leach, C. Boggis, A. Dixon, D. Easton, R. Eeles, D. Evans, F. Gilbert, I. Griebsch, R. Hoff, P. Kessar, Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365, 1769–1778 (2005)

    Article  CAS  Google Scholar 

  3. J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)

    Article  CAS  Google Scholar 

  4. L.M. Lacroix, D. Ho, S.H. Sun, Magnetic nanoparticles as both imaging probes and therapeutic agents. Curr. Top. Med. Chem. 10, 1184–1197 (2010)

    Article  CAS  Google Scholar 

  5. J. Gallo, N.J. Long, E.O. Aboagye, Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem. Soc. Rev. 42, 7816–7833 (2013)

    Article  CAS  Google Scholar 

  6. J.-H. Lee, J.-W. Kim, J. Cheon, Magnetic nanoparticles for multi-imaging and drug delivery. Mol. Cells 35, 274–284 (2013)

    Google Scholar 

  7. B.D. Cullity, Introduction to Magnetic Materials (Addison Wesley Publishing Company, Reading, MA, 1972)

    Google Scholar 

  8. K M. Unruh, C.L. Chien in Nanomaterials: Synthesis, Properties and Applications Ch. 14, Ed. by A.S. Edelstein, R.C. Cammarata (Institute of Physics Publishing, Bristol, UK, 1996)

  9. P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006)

    Article  CAS  Google Scholar 

  10. E.J. Werner, A. Datta, C.J. Jocher, K.N. Raymond, High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 47, 8568–8580 (2008)

    Article  CAS  Google Scholar 

  11. S.H. Koenig, K.E. Kellar, Theory of 1/T−1 and 1/T−2 Nmrd profiles of solutions of magnetic nanoparticles. Magn. Reson. Med. 34, 227–233 (1995)

    Article  CAS  Google Scholar 

  12. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167–R181 (2003)

    Article  CAS  Google Scholar 

  13. C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000)

    Article  CAS  Google Scholar 

  14. J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007)

    Article  CAS  Google Scholar 

  15. J.W. Bulte, D.L. Kraitchman, Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)

    Article  CAS  Google Scholar 

  16. Y.-X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surgery 1, 35–40 (2011)

    Google Scholar 

  17. D. Haddad, M.F. Hildenbrand, K.H. Hiller, M. Haddad-Weber, P.M. Jakob, Specific identification of iron oxide-labeled stem cells using magnetic field hyperthermia and MR thermometry. NMR Biomed. 25, 402–409 (2012)

    Article  CAS  Google Scholar 

  18. S.H. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticies. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  CAS  Google Scholar 

  19. S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G.X. Li, Monodisperse MFe2O4 (M = Fe, Co., Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)

    Article  CAS  Google Scholar 

  20. J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    Article  CAS  Google Scholar 

  21. J. Park, E. Lee, N.M. Hwang, M.S. Kang, S.C. Kim, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kini, J.H. Park, T. Hyeon, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 44, 2872–2877 (2005)

    Article  CAS  Google Scholar 

  22. C. Barcena, A.K. Sra, G.S. Chaubey, C. Khemtong, J.P. Liu, J. Gao, Zinc ferrite nanoparticles as MRI contrast agents. Chem. Commun. 2224–2226 (2008). doi:10.1039/B801041B

  23. J.T. Jang, H. Nah, J.H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009)

    Article  CAS  Google Scholar 

  24. C. Xu, S. Sun, New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliver. Rev. 65, 732–743 (2013)

    Google Scholar 

  25. T. Borase, T. Ninjbadgar, A. Kapetanakis, S. Roche, R. O’Connor, C. Kerskens, A. Heise, D.F. Brougham, Stable aqueous dispersions of glycopeptide-grafted selectably functionalized magnetic nanoparticles. Angew. Chem. Int. Ed. 52, 3164–3167 (2013)

    Article  CAS  Google Scholar 

  26. R.C. Ladner, Antibodies cut down to size. Nat. Biotechnol. 25, 875–877 (2007)

    Article  CAS  Google Scholar 

  27. M.M. Goldenberg, Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318 (1999)

    Article  CAS  Google Scholar 

  28. R.O. Dillman, Perceptions of Herceptin®: a monoclonal antibody for the treatment of breast cancer. Cancer Biother. Ratiopharm. 14, 5–10 (1999)

    Article  CAS  Google Scholar 

  29. A.A. Jungbluth, E. Stockert, H.S. Huang, V.P. Collins, K. Coplan, K. Iversen, D. Kolb, T.J. Johns, A.M. Scott, W.J. Gullick, A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc. Natl. Acad. Sci. 100, 639–644 (2003)

    Article  CAS  Google Scholar 

  30. L.P. Stabile, J.S. Lyker, C.T. Gubish, W. Zhang, J.R. Grandis, J.M. Siegfried, Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non–small cell lung cancer shows enhanced antiproliferative effects. Cancer Res. 65, 1459–1470 (2005)

    Article  CAS  Google Scholar 

  31. W. Pao, J. Chmielecki, Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 10, 760–774 (2010)

    Article  CAS  Google Scholar 

  32. E. Ruoslahti, M.D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987)

    Article  CAS  Google Scholar 

  33. E. Ruoslahti, RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996)

    Article  CAS  Google Scholar 

  34. R. Pasqualini, E. Koivunen, E. Ruoslahti, αv integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 15, 542–546 (1997)

    Article  CAS  Google Scholar 

  35. W. Arap, R. Pasqualini, E. Ruoslahti, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998)

    Article  CAS  Google Scholar 

  36. J. Xie, K. Chen, H.-Y. Lee, C. Xu, A.R. Hsu, S. Peng, X. Chen, S. Sun, Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αVβ3-rich tumor cells. J. Am. Chem. Soc. 130, 7542–7543 (2008)

    Article  CAS  Google Scholar 

  37. D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work at Brown University was supported in part by NIH/NCI 1R21CA12859 and the Brown Imaging Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouheng Sun.

Additional information

This tutorial review is dedicated to Professor Dwight A. Sweigart for his long time mentorship and friendship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S. Chemical Synthesis of Monodisperse Magnetic Nanoparticles for Sensitive Cancer Detection. J Inorg Organomet Polym 24, 33–38 (2014). https://doi.org/10.1007/s10904-013-9975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9975-x

Keywords

Navigation