Skip to main content
Log in

Fluorescent Carbon Dots Prepared from Hazelnut Kohl as an Affordable Probe for Determination of Dopamine

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this investigation, a simple, green and facile fluorescence mrtod using carbon dots (CDs) of hazelnut kohl is described for selective detection of dopamine (DA). The sensing system is based on hazelnut kohl (the black soot of kohl) which is used as a carbon source. Generally, kohl is a traditional eye cosmetic that used in different parts of the world and synthesized by the combustion process like burning natural materials. Here, it has been proven that black soot (kohl) obtained from hazelnut has a carbon dot structure and can be used for sensory applications. Some characterization methods are carried out to reveal the kohl structure. Also, the photoluminescence properties of the prepared CDs of kohl are investigated. It is found that the size of CDs is 2–4 nm. Besides, under the optimal conditions, the fluorescence of CDs is used for DA determination. CDs fluorescence intensity is decreased linearly with the increase of DA concentration. By using the fluorescence dependency toward the DA concentration, DA can be determined in the range 0.5–30 μM with the limit of detection of 0.30 μM. Finally, this method is successfully applied to discriminate the DA in the real samples (healthy human serum and cerebrospinal fluid (CSF)) which shows acceptable efficiently for diagnostic purposes.

Graphical abstract

The fluorescence of carbon dots, prepared from Hazelnut Kohl, is quenched in the presence of dopamine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foroughi F, Rahsepar M, Kim H (2018) A highly sensitive and selective biosensor based on nitrogen-doped graphene for non-enzymatic detection of uric acid and dopamine at biological pH value. Journal of Electroanalytical Chemistry 827:34–41

    Article  CAS  Google Scholar 

  2. Zhu L, Xu G, Song Q, Tang T, Vang X, Wei F, Hu Q (2016) Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensors and Actuators B: Chemical 231:506–512

    Article  CAS  Google Scholar 

  3. Zhou X, Ma P, Wang A, Yu C, Qian T, Wu S, Shen J (2015) Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosensors and Bioelectronics 64:404–410

    Article  CAS  PubMed  Google Scholar 

  4. Lewis MM, Huang X, Nichols DE, Mailman RB (2006) D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinson’s disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 5(3):345–353

    CAS  Google Scholar 

  5. Wu D, Xie H, Lu H, Li W, Zhang Q (2016) Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag (HIO6) 2] 5–luminol chemiluminescence detection. Biomedical Chromatography 30(9):1458–1466

    Article  CAS  PubMed  Google Scholar 

  6. Zen JM, Chen PJ (1997) A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Analytical Chemistry 69(24):5087–5093

    Article  CAS  Google Scholar 

  7. Li L, Liu H, Shen Y, Zhang J, Zhu JJ (2011) Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Analytical Chemistry 83(3):661–665

    Article  CAS  PubMed  Google Scholar 

  8. Zheng V, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors and Actuators B: Chemical 156(1):95–99

    Article  CAS  Google Scholar 

  9. Halawa MI, Wu F, Fereja TH, Lu B, Zu G (2018) One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine. Sensors and Actuators B: Chemical 254:1017–1024

    Article  CAS  Google Scholar 

  10. Das P, Ganguly S, Bose M, Mondal S, Dus AK, Banerjee S, Dus NC (2017) A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’ probe for selective sensing of copper ions. Materials Science and Engineering 75:1456–1464

    Article  CAS  PubMed  Google Scholar 

  11. Mao Y, Bao Y, Han D, Li F, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosensors and Bioelectronics 38(1):55–60

    Article  CAS  PubMed  Google Scholar 

  12. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications 48(70):8835–8837

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Liu C, Yang J, Vang Z, Liu W, Tian F (2014) Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Advances 4(7):3201–3205

    Article  CAS  Google Scholar 

  14. Liu Y, Liu C, Zhang Z (2012) Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection. Applied Surface Science 263:481–485

    Article  CAS  Google Scholar 

  15. He YS, Pan CG, Cao HX, Yoe MZ, Wang L, Liang GX (2018) Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sensors and Actuators B: Chemical 265:371–377

    Article  CAS  Google Scholar 

  16. Zhang X, Zhang Y, Wang Y, Kalytchung S, Kershaw SV, Wang Y, Wang P, Zhang T, Zhao Y, Zhang H, Cui T, Wang Y, Zhao J, Yu WW, Rogach AL (2013) Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS nano 7(12):11234–11,241.

  17. Baker SN, Baker GA (2010) Luminescent carbon nanodots, emergent nanolights. Angewandte Chemie International Edition 49(38):6726–6744

    Article  CAS  PubMed  Google Scholar 

  18. Essner JB, Kist JA, Parada L, Baker GA (2018) Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chemistry of Materials 30(6):1878–1887

    Article  CAS  Google Scholar 

  19. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2010) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chemical Communications 47(3):932–934

    Article  PubMed  Google Scholar 

  20. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie 46(34):6473–6475

    Article  CAS  PubMed  Google Scholar 

  21. Tian L, Gosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chemistry of materials 21(13):2803–2809

    Article  CAS  Google Scholar 

  22. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Geoegakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chemistry of Materials 20(14):4539–4541

    Article  CAS  Google Scholar 

  23. Sharma V, Bhardwaj S, Kumar R (2019) On the spectroscopic investigation of Kohl stains via ATR-FTIR and multivariate analysis: Application in forensic trace evidence. Vibrational Spectroscopy 101:81–91

    Article  CAS  Google Scholar 

  24. Ullah PH, Mahmood ZA, Sualeh M, Zoha SM (2010) Studies on the chemical composition of kohl stone by X-ray diffractometer. Pak J Pharm Sci 23:48–52

    CAS  PubMed  Google Scholar 

  25. Said E, Shafey E, Al-Kitani BS (2017) Comparative chemical analysis of some traditional Omani-made kohl. Toxicological & Environmental Chemistry 99(2):233–251

    Article  Google Scholar 

  26. Guo X, Wu F, Ni Y, Kokot S (2016) Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection. Analytica chimica acta 942:112–120

    Article  CAS  PubMed  Google Scholar 

  27. Chibac AL, Melinte V, Buruiana T, Buruiana EC (2017) Fluorescent polymeric sensors containing boronic acid derivatives for sugars and dopamine detection Sensing characteristics enhancement by Au NPs. Sensors and Actuators B: Chemical 253:987–998

    Article  CAS  Google Scholar 

  28. Medintz IL, Stewart MH, Trammell SA, Susumo K, Delehanty JB, Mei BC, Melinger JS, Belanco- Canosa JB, Dowson PE, Mattoussi H (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature materials 9(8):676–684

    Article  CAS  PubMed  Google Scholar 

  29. Ji X, Palui G, Avellini T, Na HB, Yi C, Knappenberger KL, mattoussi H (2012) On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. Journal of the American Chemical Society 134(13):6006–6017

    Article  CAS  PubMed  Google Scholar 

  30. Zhao D, Song H, Hao L, Liu X, Zhang L, Lev Y (2013) Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 107:133–139

    Article  CAS  PubMed  Google Scholar 

  31. Naghashian-Haghighi A, Hemmateenejad B, Shamsipur M (2018) Determination of enantiomeric excess of some amino acids by second-order calibration of kinetic-fluorescence data. Analytical biochemistry 550:15–26

    Article  CAS  PubMed  Google Scholar 

  32. Tripathi KM, Tran TS, Tung TT, Losic D, Kim TY (2017) Water soluble fluorescent carbon nanodots from biosource for cells imaging. Journal of Nanomaterials 2017:1–10

    Article  Google Scholar 

  33. Zhuang Q, Cao W, Ni Y, Yang Y (2018) Synthesis-identification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis. Talanta 185:49–498

    Article  Google Scholar 

  34. McEnally CS, Pfefferle LD, Atakan B, Kohse-Hoinghaus (2006) K Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Progress in Energy and Combustion Science 32(3):247–294

    Article  CAS  Google Scholar 

  35. Zhang S, Zhang L, Huang L, Zheng G, Zhang P, Jin Y, Jiao Z, Sun X (2019) Study on the fluorescence properties of carbon dots prepared via combustion process. Journal of Luminescence 206:608–612

    Article  CAS  Google Scholar 

  36. Alas MO, Genc R (2017) An investigation into the role of macromolecules of different polarity as passivating agent on the physical, chemical and structural properties of fluorescent carbon nanodots. Journal of Nanoparticle Research 19(5):185

    Article  Google Scholar 

  37. LiQuin L, YuanFang L, Lei Z, Yue L, ChengZhi H (2011) One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Science China Chemistry 54(8):1342–1347

    Article  Google Scholar 

  38. Klegeris A, Korkina LG, Greenfield SA (1995) Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions. Free radical biology and medicine 18(2):215–222

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Zhao L, Lan C, Zhao S (2016) Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical 223:246–251

    Article  CAS  Google Scholar 

  40. Massart D, Vandeginste B, Deming S, Michotte Y, Kaufman L (1998) Chemometrics: A textbook. Elsevier, Amsterdam, pp. 107–114.

  41. Zhao C, Jiao Y, Hua J, Yang J, Yang Y (2018) Hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for the detection of dopamine. Journal of fluorescence 28(1):269–276

    Article  CAS  PubMed  Google Scholar 

  42. Mu Q, Xu H, Li Y, Ma S, Zhong X (2014) Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 139(1):93–98

    Article  CAS  PubMed  Google Scholar 

  43. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics 25(10):2366–2369

    Article  CAS  PubMed  Google Scholar 

  44. Devi JA, Aswathy B, Asha S, George S (2017) Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. Analytical chemistry 72(4):445–459

    Article  Google Scholar 

  45. Qu F, Huang W, You J (2018) A fluorescent sensor for detecting dopamine and tyrosinase activity by dual-emission carbon dots and gold nanoparticles. Colloids and Surfaces B: Biointerfaces 162:212–219

    Article  CAS  PubMed  Google Scholar 

  46. Niu S, Fang Y, Zhang K, Sun J, Wan J (2017) Determination of dopamine using the fluorescence quenching of 2, 3-diaminophenazine. Instrumentation Science & Technology 45(1):101–110

    Article  CAS  Google Scholar 

Download references

Availability of Data and Materials

Not applicable.

Funding

The work is funded by Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Contributions

Neda Chavoshi; design the work, acquiring data and preparing first draft.

Bahram Hemmteenejad; Conceptualization, supervision, validation and writing the final draft.

Corresponding author

Correspondence to Bahram Hemmateenejad.

Ethics declarations

Competing Interests

There are nothing to declare

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavoshi, N., Hemmateenejad, B. Fluorescent Carbon Dots Prepared from Hazelnut Kohl as an Affordable Probe for Determination of Dopamine. J Fluoresc 31, 455–463 (2021). https://doi.org/10.1007/s10895-020-02668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02668-y

Keywords

Navigation