Skip to main content
Log in

Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon dots are nano-sized photoluminescence materials which have good biocompatibility and low cytotoxicity, while the previously synthesized carbon dots lack tumor targeting capability and therapy function so that it cannot achieve the purpose of diagnosis and treatment. Herein, a new kind of multi-functional carbon dots (GFCDs) is promising to be applied in tumor cells imaging and clinical targeted therapy. Gallic acid (GA) was used as the carbon resource and antitumor active molecule, folic acid (FA) was used as the nitrogen resource and tumor targeting molecule, and citric acid monohydrate (CA) was used as the auxiliary carbon source. Multi-functional GACDs were synthesized by a simple one-step microwave-assisted procedure and analyzed with UV − vis spectrophotometer, fourier transform infrared spectrometer, transmission electron microscopy and X-ray photoelectron spectrometer. Results show that the diameter of GFCDs is about 3 nm. And GFCDs are pale-yellow under natural light which turn blue under 360 nm UV lamp. Besides ester bond is the connecting mode between functional molecules. In addition, the results of in vitro cell imaging experiments and in vivo antitumor experiments demonstrate the targeting imaging and antitumor abilities towards Hela cells.

Graphical abstract

The synthesis route and properties of GFCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Zhi B, Gallagher MJ, Frank BP, Lyons TY, Qiu TA, Da J et al (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact. Carbon 129:438–449. https://doi.org/10.1016/j.carbon.2017.12.004

    Article  CAS  Google Scholar 

  2. Lu S, Liu L, Wang H, Zhao W, Li Z, Qu Z, Li J, Sun T, Wang T, Sui G (2019) Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater Sci 7:3258–3265. https://doi.org/10.1039/c9bm00570f

    Article  CAS  PubMed  Google Scholar 

  3. Sharma S, Umar A, Sood S, Mehta SK, Kansal SK (2018) Photoluminescent C-dots: an overview an the recent development in the synthesis, physiochemical properties and potential applications. J Alloy Compd 748:818–853. https://doi.org/10.1016/j.jallcom.2018.03.001

    Article  CAS  Google Scholar 

  4. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem 5:3717–3734. https://doi.org/10.1039/c6ta08660h

    Article  CAS  Google Scholar 

  5. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  PubMed  Google Scholar 

  6. Isnaeni YH, Suliyanti MM (2018) Concentration effect on optical properties of carbon dots at room temperature. J Lumines 198:215–219. https://doi.org/10.1016/j.jlumin.2018.02.012

    Article  CAS  Google Scholar 

  7. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986. https://doi.org/10.1039/c2cc30188a

    Article  CAS  Google Scholar 

  8. Barman MK, Patra A (2018) Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C-Photochem Rev 37:1–22. https://doi.org/10.1016/j.jphotochemrev.2018.08.001

    Article  CAS  Google Scholar 

  9. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6:7944–7970. https://doi.org/10.1039/c7tc05878k

    Article  CAS  Google Scholar 

  10. Rodrigues J, Pereira SO, Teixeira SS, Zhou YQ, Peng ZL, Liyanage PY, Leblanc RM, Barros-Timmons AMMV, Costa LC, Costa FM (2018) Insights into the photoluminescence properties of gel-like carbon quantum dots embedded in poly(methyl methacrylate) polymer. Mater Today Commun 18:32–38. https://doi.org/10.1016/j.mtcomm.2018.10.014

    Article  CAS  Google Scholar 

  11. Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47. https://doi.org/10.1016/j.talanta.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  12. Das A, Snee PT (2016) Synthetic developments of nontoxic quantum dots. ChemPhysChem 17:598–617. https://doi.org/10.1002/cphc.201500837

    Article  CAS  PubMed  Google Scholar 

  13. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. https://doi.org/10.1021/nl047996m

    Article  CAS  PubMed  Google Scholar 

  14. Fan R-J, Sun Q, Zhang L, Zhang Y, Lu A-H (2014) Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 71:87–93. https://doi.org/10.1016/j.carbon.2014.01.016

    Article  CAS  Google Scholar 

  15. Kumar S, Ojha AK, Ahmed B, Kumar A, Das J, Materny A (2017) Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Mater. Today Commun. 11:76–86. https://doi.org/10.1016/j.mtcomm.2017.02.009

    Article  CAS  Google Scholar 

  16. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603. https://doi.org/10.1016/j.nantod.2014.09.004

    Article  CAS  Google Scholar 

  17. Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745. https://doi.org/10.1016/j.nantod.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  19. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  20. Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828. https://doi.org/10.1002/adma.200902812

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, Yang J, Jia L, Yu JS (2015) Ethanol in aqueous hydrogen peroxide solution: hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon 93:999–1007. https://doi.org/10.1016/j.carbon.2015.06.018

    Article  CAS  Google Scholar 

  22. Pham-Truong TN, Petenzi T, Ranjan C, Randriamahazaka H, Ghilane J (2018) Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon 130:544–552. https://doi.org/10.1016/j.carbon.2018.01.070

    Article  CAS  Google Scholar 

  23. Pires NR, Santos CMW, Sousa RR, de Paula RCM, Cunha PLR, Feitos JPA (2015) Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum. J Braz Chem Soc 26:1274–1282. https://doi.org/10.5935/0103-5053.20150094

    Article  CAS  Google Scholar 

  24. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541. https://doi.org/10.1021/cm800506r

    Article  CAS  Google Scholar 

  25. Basu N, Mandal D (2019) Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores. Photochem Photobiol Sci 18:54–63. https://doi.org/10.1039/c8pp00077h

    Article  CAS  PubMed  Google Scholar 

  26. Mintz KJ, Guerrero B, Leblanc RM (2018) Photoinduced electron transfer in carbon dots with long wavelength photoluminescence. J Phys Chem 122:29507–29515. https://doi.org/10.1021/acs.jpcc.8b06868

    Article  CAS  Google Scholar 

  27. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  28. Zhang M, Wang W, Cui Y, Zhou N, Shen J (2018) Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modal targeted imaging in chemo-photothermal synergistic therapy. ACS Biomater Sci Eng 4:151–162. https://doi.org/10.1021/acsbiomaterials.7b00531

    Article  CAS  PubMed  Google Scholar 

  29. Zhou T, Huang Z, Wan F, Sun Y (2020) Carbon quantum dots-stabilized Pickering emulsion to prepare NIR light-responsive PLGA drug delivery system. Mater Today Commun 23:100951. https://doi.org/10.1016/j.mtcomm.2020.100951

    Article  CAS  Google Scholar 

  30. Lai CW, Hsiao YH, Peng YK, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem 22:14403–14409. https://doi.org/10.1039/c2jm32206d

    Article  CAS  Google Scholar 

  31. Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327. https://doi.org/10.1016/j.carbon.2014.12.045

    Article  CAS  Google Scholar 

  32. Suvorov NV, Mironov AF, Grin MA (2017) Folic acid and its derivatives for targeted photodynamic therapy of cancer. Russ Chem Bull 66:1982–2008. https://doi.org/10.1007/s11172-017-1973-7

    Article  CAS  Google Scholar 

  33. Zhang M, Shi X (2013) Folic acid-modified dendrimer-DOX conjugates for targeting cancer chemotherapy. J Control Release 172:E55–E56. https://doi.org/10.1016/j.jconrel.2013.08.115

    Article  CAS  Google Scholar 

  34. Tang Y, Li Y, Xu R, Li S, Hu H, Xiao C, Wu H, Zhu L, Ming J, Chu Z (2018) Self-assembly of folic acid dextran conjugates for cancer chemotherapy. Nanoscale 10:17265–17274. https://doi.org/10.1039/c8nr04657c

    Article  CAS  PubMed  Google Scholar 

  35. Baggott JE (2000) Hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at pH 2.5 to 4.5. Biochemistry 39:14647–14653. https://doi.org/10.1021/bi001362m

    Article  CAS  PubMed  Google Scholar 

  36. Ichinose N, Tsuneyoshi T, Kato M, Suzuki T, Ikeda S (1993) Fluorescent high-performance liquid chromatography of folic acid and its derivatives using permanganate as a fluorogenic reagent. Anal Bioanal Chem 346:841–846. https://doi.org/10.1007/BF00321302

    Article  CAS  Google Scholar 

  37. Thomas AH, Lorente C, Capparelli AL, Pokhrel MR, Braun AM, Oliveros E (2020) Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem Photobiol Sci 1:421–426. https://doi.org/10.1039/b202114e

    Article  CAS  Google Scholar 

  38. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110. https://doi.org/10.1021/nn300760g

    Article  CAS  PubMed  Google Scholar 

  39. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957. https://doi.org/10.1039/c2cc33869f

    Article  CAS  Google Scholar 

  40. Al Awak MM, Wang P, Wang S, Tang Y, Sun YP, Yang L (2017) Correlation of carbon dots' light-activated antimicrobial activities and fluorescence quantum yield. RSC Adv 7:30177–30184. https://doi.org/10.1039/c7ra05397e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, Gu Z, Chang B, Zheng C, Lin C, Sun H, Yang B (2016) Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl Mater Inter 8:32706–32716. https://doi.org/10.1021/acsami.6b12252

    Article  CAS  Google Scholar 

  42. Guan W, Gu W, Ye L, Guo C, Su S, Xu P, Xue M (2014) Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. Int J Nanomedicine 9:5071–5078. https://doi.org/10.2147/IJN.S68575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu D, Wang X, Bao Y, Sun Z (2020) Recent advance of carbon dots in bio-related applications. J Phys Mater 3:022003. https://doi.org/10.1088/2515-7639/ab7cb9

    Article  CAS  Google Scholar 

  44. Wang S, Chen L, Wang JL, Du JL, Li Q, Gao YD, Yu SP, Yang YZ (2020) Enhanced-fluorescent imaging and targeted therapy of liver cancer using highly luminescent carbon dots-conjugated foliate. Mat Sci Eng C-Mater 116:111233. https://doi.org/10.1016/j.msec.2020.111233

    Article  CAS  Google Scholar 

  45. Ren W, Nan FC, Li SM, Yang SJ, Ge JC, Zhao ZW (2020) Red emissive carbon dots prepared from polymers as an efficient nanocarrier for coptisine delivery in vivo and in vitro. ChemMedChem. https://doi.org/10.1002/cmdc.202000420

  46. Wang XD, Li X, Mao YL, Wang D, Zhao QF, Wang SL (2019) Multi-stimuli responsive nanosystem modified by tumor-targeted carbon dots for chemophototherapy synergistic therapy. J Colloid Interf Sci 552:639–650. https://doi.org/10.1016/j.jcis.2019.05.085

    Article  CAS  Google Scholar 

  47. Huang XL, Zhang F, Zhu L, Choi KY, Guo N, Guo JX, Tackett K, Anilkumar P, Liu G, Quan QM (2013) Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7:5684–5693. https://doi.org/10.1021/nn401911k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Heilongjiang Province of China (E2018002), the National Natural Science Foundation of China (No. 51403030), and the University-Student Innovative Experiment Project Fund Support for Northeast Forestry University (No. 202010225066).

Author information

Authors and Affiliations

Authors

Contributions

Genrong Li: Conceptualization, Methodology. Rongyao Lv: Data curation, Writing- Original draft preparation. Shuting Lu: Investigation. Ting Wang: Writing - Review & Editing.

Corresponding author

Correspondence to Ting Wang.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

All animal studies were conducted according to the Guidelines for Care and Use of Laboratory Animals of Harbin Medical University and approved by the Animal Ethics Committee of Harbin Medical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, R., Li, G., Lu, S. et al. Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy. J Fluoresc 31, 339–348 (2021). https://doi.org/10.1007/s10895-020-02661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02661-5

Keywords

Navigation